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PREFACE.

rriHIS text-book, as is stated on the title-page, has been prepared

expressly for the use of the Cadets of the United States

Military Academy, and this specific object has therefore wholly

controlled its design and restricted its scope. It is thus in no

sense a treatise. Because of the limited time allotted to the sub-

jects of sound and light in the present distribution of studies at

the Academy, the problem of arranging a fundamental course of

sufficient strength, to be something more than popular, and yet to

be mastered within the allotted time, has been somewhat perplex-

ing. The basis of this arrangement is necessarily the mathematical

attainments of the class for which the course is intended. In this

respect, the class has completed the study of elementary Mathe-

matics, as far as to include the Calculus, and has had a four

months' study of the application of pure Mathematics, in a course

of Analytical Mechanics. With these elements to govern, this

text-book has been designed for a seven weeks' course, including

advance and review. The fact of being able, through the discipline

of the Academy, to exact of each student a certain number of hours

of hard study on each lesson, is of course an important element

necessary to be stated.

The study of the text is supplemented by lectures, in which the
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principles of Acoustics and Optics are amply illustrated by the aid

of a very well equipped laboratory of physical apparatus. Carefully

written notes of the lectures are submitted by each student to the

instructor on the following morning for revision and criticism.

Important errors of fact and misinterpretation of principle are thus

at once detected, corrected, and hence prevented from obtaining a

lodgment in the mind of the pupil. Another element in this

matter of instruction, of sufficient importance to be mentioned, is

the opportunity freely exercised by each student of making known

the difficulties that he has encountered, before being called upon

to exhibit his proficiency in the lesson of the day. It is required

that these difficulties shall be clearly and exactly stated, in order

that the instructor may, by a judicious question or a concise expla-

nation, enable the student to clear up the difficulty as of himself,

and thus complete the elucidation.

The author believes that this method of instruction, taken as a

whole, is in sufficiently intimate accord with the text as to gain the

following advantages, viz. : 1, the tasks are of the requisite strength

to demand all the study-time allotted to his department of instruc-

tion, and thus is secured the invaluable mental effort and discipline

due to a specified number of hours of hard study ; 2, while the

daily tasks are progressive, they are based on fundamental princi-

ples which require the exercise of a rational faith, and develop a

continual growth of confidence in the mind of the pupil, and a

belief in his own ability to overcome each difficulty as it arises
;

3, when the course is completed, the student finds himself

equipped with a satisfactory knowledge of the essential principles

of the physical science, to which he may add by further individual

study, without the necessity of reconstructing his foundation.
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The elements of character developed in the student by this sys-

tem of instruction, viz., confidence in his powers, reliance on

individual effort, and capacity to appreciate truly his sources of

information, are of essential importance in a career where he may

be called upon in emergencies to exercise self-control, and to meet

manfully unforeseen difficulties
;
and they offer a sufficient reason

for the importance given to these studies in the curriculum of the

Academy.

Text-books are generally compilations. The subject-matter of

this text has been gathered by the author from whatever source

appeared to him best for the purpose in view. And as it is often

desirable to refer to original treatises, for a better conception of the

subject under discussion, a list of authors is appended to this

Preface.

In the arrangement of the matter, the author has been governed

alone by the necessities of the case and the restrictions of the

course. It has therefore seemed advisable to arrive at the deduc-

tion of Fresnel's wave surface as expeditiously as possible, and on

the way to establish all of the essential principles of undulatory

motion common to sound and light. Sufficient theoretical atten-

tion is paid in the text to the wave surface, and a study of its model

in the lecture-room makes clear its important properties and those

of its special cases. Acoustics is briefly treated, and is indeed made

subsidiary to Optics, by utilizing its numerous illustrations in vi-

bratory motion, so that the laws of this motion may be the more

clearly apprehended in the subject of light. In Optics, while the

essential principles of the deviation of light by lenses and mirrors,

the construction of optical images and the principal telescopic com-

binations, are carried only to first approximations, and are some-
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what more condensed than is usual, nothing essential to the

Academic course of Astronomy has been omitted. The part

relating to physical Optics is very concise, but the experiments

performed and illustrations given in the lecture room, especially in

diffraction, dispersion, and polarization, largely remedy this defect.

The figures throughout the text were drawn by Lieut. Arthur

Murray, 1st U. S. Artillery, Acting Asst. Professor of Philosophy,

U. S. M. A., to whom I desire to acknowledge my great indebted-

ness.

P. S. M.

WEST POINT, N. Y., May, 1882.
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PART I.

WAVE MOTION.

1. Equation (E) of Analytical Mechanics (Michie),

expresses in mathematical language the law that the potential

energy expended is equal to the kinetic energy developed. Every
analytical discussion of the action of force upon matter must
be founded upon this general equation. For the complete solution

of every problem of energy, it is necessary to know the intensities,

lines of action, and points of application of the acting forces, the

masses acted Upon, and to possess a perfect mastery of such mathe-

matical processes as are necessary to pass to the final equations
whose interpretation will make known the effects. These difficul-

ties, which, in Mechanics, limit the discussion to the free, rigid

solid, and to the perfect fluid, are, in Molecular Mechanics, almost

insuperable; since we neither know the nature of the forces which

unite the elements of a body into a system, nor the constitution of

the elements themselves.

2. But the faculty of observation, being cultivated and logically

directed, has enabled scientific men to originate experiments which,
because of our inherent faith in the uniformity of the laws of na-

ture, have resulted in certain hypotheses as to the nature of sound,

light, heat, and other molecular sciences. When an hypothesis not

only satisfactorily explains the known phenomena of the science in

question, but even predicts others, it then becomes a theory, and

its acceptance is more or less complete. An hypothesis is related

to a theory as the scaffolding to the structure, the latter being so

proportioned in all its parts as to be in the completest harmony,
while the former may be modified in any way to suit the ever-

varying necessities of the architect.
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While there are many matters concerning which a reasonable

doubt may be entertained, because of insufficient data, the progress
of scientific thought and the fertility of scientific research have,
within recent times, estabi shed certain facts that are now univer-

sally accepted.

3. Molecular Science* Molecular science is a branch of

Mechanics in which the forces considered are the attractions and

repulsions existing among the molecules of a body, and the masses

acted upon are the indefinitely small elements, called molecules, of

which the body is composed. It embraces light, heat, sound, elec-

trics, and, in one sense, chemistry.
4. From the facts of observation and experiment, it is assumed

that all matter, whether solid, liquid, or gaseous, is made up of an

innumerable number of molecules in sensible, though not in actual

contact
;
that these molecules are so small as not to be within range

of even our assisted vision
; and that they are separated from each

other by distances which are very great compared with their actual

linear dimensions.

5. The molecular forces, which determine the particular state

of the matter, are either attractive or repulsive. When the attrac-

tive forces exceed the repulsive in intensity, the body is a solid;

when equal to the repulsive, a liquid ;
and when less, a gas. The

relative places of equilibrium of the molecules are determined by
the molecular forces called into play by the action of extraneous

forces applied to the body. Thus, when a solid bar is subjected to

the action of an extraneous force, either to elongate or to compress

it, the molecules assume new positions of equilibrium with each

increment of force, and, in either case, the aggregate molecular

forces developed are equal in intensity, but contrary in direction,

to the extraneous force applied. In general, where rupture does

not ensue, the extraneous forces applied are much less than the

molecular forces capable of being called into play.

6. While we are ignorant of the true nature of force and mat-

ter, our senses enable us to appreciate the effects of the former

upon the latter. Our whole knowledge of the physical sciences i&

based upon the correct interpretation of these sensuous impressions.

Observation teaches that if a body be subjected to the action of an

extraneous force, the effect of the force is transmitted throughout
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the body in all directions, and since the body is connected with the

rest of the material universe, there is no theoretical limit to the

ultimate transfer of this effect throughout space.

7. Among the appreciable effects of force are the changes of

state with respect to rest and motion. These can be transferred

from an origin to another point in but two ways, viz. :

1. By the simultaneous transfer of the body, which is the de-

pository of the motion.

2. By the successive actions and reactions between the consec-

utive molecules along any line from the origin.

In the molecular sciences, the latter is assumed to be the method

of transfer, and the object of the succeeding discussion is to inves-

tigate the nature of the disturbance, the circumstances of its

progress, and the behavior of the molecules as they become involved

in it.

8. While the initial disturbance is perfectly arbitrary, the

molecular motions produced through its influence in any medium
are necessarily subjected to the variable conditions which result

from the action of the forces that unite the molecules into a mate-

rial system. The problems are then those of constrained motion.

9. Among the physical properties of bodies, elasticity is of such

great importance, that a complete knowledge of its mathematical

theory is essential to the thorough elucidation of many of the phe-
nomena of molecular science. The limits of this text permit but a

passing allusion to its more important laws.

ELASTICITY.
10. A body is said to be homogeneous when it is formed of

similar molecules, either simple or compound, occupying equal

spaces, and having the same physical properties and chemical com-

position. In such a body, a right line of given length I and deter-

minate direction is understood to pass through the same number n

of molecules wherever it is placed ;
the ratio - will vary with the

W/

direction of I. In crystalline bodies, considered as homogeneous,

- varies with the direction
;
in homogeneous non-crystalline bodies,

such as glass, the ratio varies insensibly, or is independent of the
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direction. This supposition requires n to be very great, however

small I may be.

11. That property, by which the internal forces of a body or

medium restore, or tend to restore, the molecules to their primitive

positions, when they have been moved from these positions by the

action of some external force, is called Elasticity.

12. The elasticity is said to be perfect when the body always

requires the same force to keep it at rest in the same bulk, shape,

and temperature, through whatever variations of bulk, shape, and

temperature it may have been subjected.

13. Every body has some degree of elasticity of bulk. If a body

possess any degree of elasticity of shape, it is called a solid ;
if none,

a fluid. All fluids possess great elasticity of bulk. While the

elasticity of shape is very great for many solids, it is not perfect for

any. The degree of distortion within which elasticity of shape is

found, is essentially limited in every solid
;
when the distortion is

too great, the body either breaks or receives a permanent set ; that

is, such a molecular displacement that it does not return to its

original figure when the distorting force is removed.

14. The limits of elasticity of metal, stone, crystal, and wood

are so narrow that the distance between any two neighboring mole-

cules of the substance never alters by more than a small proportion
of its own amount, without the substance either breaking or expe-

riencing a permanent set. In liquids, there are no limits of elas-

ticity as regards the magnitude of the positive pressures applied ;

and in gases, the limits of elasticity are enormously wider with

respect to rarefaction than in either solids or liquids, while there is

a definite limit in condensation when the gas is near the critical

temperature.
15. The substance of a homogeneous solid is called isotropic

when a spherical portion exhibits no difference, in any direction, in

quality, when tested by any physical agency. When any difference

is thus manifested, it is said to be celotropic.

16. Origin of the Theory of Elasticity. In Mechan-

ics, by supposing the bodies perfectly rigid, and the distances of

the points of application of the extraneous forces invariable, how-
ever great the forces, the -problems are much simplified, without

affecting their generality. But this ignores the law by which the
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reciprocal influence is transmitted from point to point of the body,
and by which the action of one force is counterbalanced by the

actions of others. In reality, the body undergoes deformation, and
when the limit is reached, rupture ensues. The mathematical

theory has arisen from the necessity of a knowledge whereby these

permanent deformations and rupture may be avoided. This theory
has been extended to the determination of the laws of small motions,

or, in general, to the vibrations of elastic media.

17. The initial state of a homogeneous body is considered to be

that in which it is perfectly free from all extraneous forces, to be,

indeed, that of a body falling freely in vacuo. Such a body is then

the geometrical place of an innumerable number of material points,

which are distinguished from the rest of space by several mechani-

cal properties. Each of these material points is called a molecule.

18. When such a body is subjected to the action of an extra-

neous force, either a tension or a pressure, a motion of its surface

particles ensues, and this disturbance is propagated to the interior

molecules
;
the body becomes slightly distorted, and soon takes a

new state of equilibrium. When the external forces are removed,
the internal forces are again balanced, and the original condition is

restored, provided there is no permanent set. All changes of form

of a solid, or any variation of the relative distances of its material

points, are ever accompanied by the development of attractive or

repulsive forces between the molecules. These variations and forces

begin, increase, decrease, and end at the same time, and hence are

mutually dependent.
19. The properties of a solid body depending only upon those

of its material points, they alone are the foci whence emanate these

interior forces.

20. Let an extraneous force be applied to a body, and consider

its effect upon any two molecules sufficiently near each other to be

mutually affected by their changes of position. Should one of the

molecules, on account of this exterior action, approach the other, a,

mutual repulsion takes place, which, in time, overcomes the motion

of the first molecule, and causes the second to take its new position

of equilibrium with respect to the first. The reverse is the case

when the first molecule withdraws from the second, and an attrac-

tive force is developed between them. If r represent the primitive

distance, Ar may represent the displacement. Then the intensity
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of the attractive or repulsive force developed between the molecules

may be represented by /(r, Ar). This function becomes zero when
Ar is zero, whatever r may be

;
it decreases rapidly when r has a sensi-

ble value, whatever Ar may be, since all cohesion ceases between

two parts of the same body separated by an appreciable distance.

Assuming that the intensity of the molecular forces varies directly

with the degree of displacement, this limitation embodies only the

cases where the changes of form are very small, whether the extra-

neous forces are extremely small or the bodies considered have

great rigidity. Hence, f (r, Ar) is limited to the product of a

function of r and the first power of Ar, which becomes infinitely

small when Ar becomes infinitely small.

21. Elastic Force defined. From any molecule M in the

interior of a solid, with a radius equal to the greatest distance be-

yond which /(/) is insensible, describe

a sphere. This volume will embrace all

molecules that influence the molecule M,
and may be called the sphere of molecular

activity. Pass a plane through M, di-

viding the sphere into the two parts SAC
and SBC. Normal to KN" and having for

its base a differential surface <>, con-

ceive a cylinder in the hemisphere SBC.
p

,
ure {

When the equilibrium is disturbed, the

molecules in SAC will act on the molecules of the cylinder.

The resultant uE of all these actions is called the elastic force

exerted by SAC upon SBC, referred to the infinitesimal sur-

face w. Integrating this function with respect to the plane, we

obtain the elastic force referred to the circle SMC. The resultant

uE will, in general, be oblique to the plane element w. If it is

normal to this element and directed towards the hemisphere SAC,
it will be a traction

;
if normal and directed toward SBC, it will

be a pressure; if parallel to the plane SMC, it will be the tan-

gential elastic force.

Similarly, if the cylinder is situated in the hemisphere SAC, the

resultant elastic force exerted upon the molecules of the cylinder

by the molecules in SBC is represented by uE', referred to the

same elementary surface w. If the body, slightly changed in form,
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is in equilibrium of elasticity, the two elastic forces uE and

should be equal in intensity, but contrary in direction. Both,

however, will represent either pulls, pressures, or tangential forces ;

that is, if one is a pull, the other will be a pull directly opposed
to it.

The elastic force uE, considered with reference to the element

planes w drawn parallel to each other through all points of the

body, will vary in intensity and direction from point to point ;
and

at the same point M will vary with the orientation of the element

plane w.

22. The direction of the planes w may be determined by that of

their normals. Using the angles and V to designate the latitude

and longitude of the point where the normal pierces the surface of

the sphere of activity, and representing by x, y, and z the co-ordi-

nates of this point referred to the co-ordinate axes, we have

x =. cos (^ cos V>, y = cos sin i/>,
z = sin 0.

Representing the orthographic projections of uE by wJT", wl
7

",

and uZ upon the co-ordinate axes, we see, in the case of equilibrium

of elasticity, that <*>E will be a function of the five variables x, y, z,

0, and
i/> ;

and if the motion be progressive, the variable t will also

enter. X, Y, and Z can be determined from uE, (f>,
and V> ; and,

reciprocally, the latter from the former. X, Y, and Z are, how-

ever, usually determined, and are, in general, functions of the six

variables (x, y, 2, 0, i/>, ), and which being found according to the

special circumstances that cause the deformation of the body, would

enable us to ascertain, at each instant and at each point of the

body, the direction and intensity of the elastic force exerted upon

every element plane passing through the given point. In brief, the

determination of these functions and the study of their properties

are the principal objects of the mathematical theory of elasticity.

23. Elasticity of Solids. Experiment has shown that,

when a solid bar is subjected to small elongations, or those within

elastic limits, the following laws are verified, viz. : 1, the elonga-

tions are directly proportional to the length of the bar; 2, they are

inversely proportional to the area of cross section ; 3, they are

directly proportional to the intensity of the elongating force
; 4,
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they are variable for bars of different materials,

mental laws can be expressed by the equation,

1 PI

These experi-

(i)

in which I is the length of the bar unloaded, s the area of cross-

section, P the intensity of the stretching force, M a coefficient

varying with the nature of the material, and A is the correspond-

ing elongation. Making s = 1, A
I, we get, from the above

equation, P = M. If, therefore, the law of the elongation
should remain true for all intensities, M would be that intensity

which, applied to a bar of unit area in cross-section, would make
the elongation equal to the original length. Such an hypothesis

gives us the value of the coefficient M, which can be used within

the limits of experiment. M is called the coefficient or modulus of

longitudinal elasticity, or Young's modulus. While we cannot

experiment over such wide limits in longitudinal compression,
because of the liability to flexure, the same laws are held to be

applicable, with the same limitations. Taking the metre for the

unit of length, the square centimetre for the unit of area, and the

gramme for the unit of intensity, the moduli of longitudinal elas-

ticity for the principal metals are, according to Wertheim, as follows:

Lead, . 177 xlO6

Gold, ...... 813 xlO6

Silver, 736 xlO6

Zinc, . . . 873 xlO6

Copper, 1245xl06

Platinum, .... 1704 x 106

Iron, 1861 xlO6

Steel, 1955 xlO6

The coefficient of elasticity decreases with increase of tempera-
ture between 15 and 200 0.

24. An isotropic solid has, in addition to the modulus of longi-

tudinal elasticity, a modulus of rigidity ;
tho former relating to the

elasticity of bulk or volume, and the latter to that of shape. If a

bar be of square cross-section before elongation, it will be found

afterwards to have undergone deformation in its angles, although
the diagonals of the cross-section may still be at right angles. The
numerical ratio of the intensity of the force applied, to the deforma-

tion produced is the modulus of rigidity. The deformation is

measured by the change in each of the four right angles, in terms

of the radian (57. 29) as unity.



RELATING TO SOUND AND LIGHT. 25

Let

to the

25. Fundamental Coefficients of Elasticity.
there be a rectangular parallelopipedon AH, subjected at first

action of equal and opposite normal

pressures on the two bases AD and EH.
The vertical edges will, by the laws of

elongation, shorten, and the horizontal

edges increase in length ;
and the relative

changes in length will be proportional to

the quotient of the normal pressures by
the area AD

;
that is, to the pressure on

the unit of area.

Let be the relative shortening of the Figure 2,

vertical edges, ft the relative increase of

the horizontal edges, and P the pressure on the unit of area, then

a mP, = nP,

m and n being coefficients to be determined only by experiment.
If Q be the pressure applied to the unit area on the faces AF and

CH, the edge AC will be shortened ', and the edges AB, AE
lengthened /3', and we will have

a' = mQ, f3' = nQ.

If R be the pressure on the unit area of the faces AG and BH,
the edge AB will be shortened ", and the edges AE and AC elon-

gated /3", and we will have

a" = mR, ft" = nR.

If now the three pairs of pressure, P, Q, 7?, act simultaneously,
their effects will be superposed, and, representing by e, e', e", the

relative variations of the lengths of the edges AE, AC, and AB, we

will have

e =a -_(0' + 0") = mP-n(Q + R),
)

e' = a' - (ft + ft")
= mQ-n(P + R), \ (2)

B" = "-(0 +0') = mR-n(P+Q)i )

from which we readily deduce,

P = He + K(e' + e"),
)

Q = He' +K(e-+e"), V
(3)

R = He" + Ke + e' )
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, . , rr m n
in which H =

m (m n)

K = n
I

m (m n) 2n2
J

Hence the pressures exerted upon the faces of the volume, and

therefore the elastic reactions, can be expressed as linear functions

of the relative variations of the length of the edges by means of two

constant coefficients. These two coefficients, H and K, are funda-

mental in the theory of elasticity. They can only be determined

by experimental investigations ;
-once determined for any body, the

problems of elasticity become those of rational mechanics.

Exact analysis of the conditions of equilibrium in the interior

of a solid elastic body shows that, in each point of the body, there

exist three rectangular directions, variable from one point to an-

other, such that the elements perpendicular to these directions

support normal pressures or tractions.

An infinitely small parallelopipedon, having its edges parallel to

these three directions, is in the condition of that discussed above;
and it suffices to express, in a general manner, the relations which

exist between the pressures which it sustains and the changes of

length of its infinitely small dimensions, to obtain the differential

equations of the problem under consideration.

26. Equations (3) can be written,

p = (H- K)e + K(e + e' + e"), }

Q = (H K) e' + K(B + e' + e"),
[

(5)

R = (H K) e" + K(e + e' + e"). J

Calling the relative variation of the volume, or cubic dilata-

tion, we may, because of the small values of the deformations, write

6 = e + e' + e". (6)

Placing H K = 2/* and K = A, we have

Q = A0 + tyie',
V

(7)

Each of the tractions or pressures is then the sum of a term pro-

portional to the cubic dilatation and of a term proportional to the

linear dilatation parallel to the pressure considered.



RELATING TO SOUND AND LIGHT. 27

27. A liquid parallelepipedon can be in equilibrium only when
the pressures exerted on its six faces are equal ;

and we know be-

sides that the increase of density or negative increase of volume of

the liquid is proportional to the pressure. We will then have

P = Q = R = M. (8)

The same general theory thus comprises both liquids and solids,

in admitting the coefficient 2{i of the former to be zero. The varia-

tion of this coefficient from zero marks the departure of the body
from the perfect liquid state and its approach to that of the solid.

28. Analytical expression of the elastic forces developed
in the motion of a system of molecules, solicited by the forces

of attraction or repulsion, and subjected to small displace-
ments from their positions of equilibrium.

Let x, y, z, and #+ A#, y + ky, z-fAz, be the rectangular co-

ordinates of the two molecules of the system, whose masses are

respectively m and ^ and whose distance apart is r. The intensity

of the reciprocal action of the molecules, being exerted along the

right line joining them, is

f(r) being an undetermined function of the distance. If the sys-

tem is in equilibrium, we have the relations,

(9)

Az

At a certain instant, let us suppose that the molecules of the

system are displaced from their positions of equilibrium by a very

small distance, and let , T/, , be the projections of the displace-

ment e of the molecule m on the axes; let -f-A& 77+ AT/, +A,
be the projections of the displacement of the molecule fi on the

axes; and r-f p the new distance between the molecules. Kepre-

senting the components of the elastic force parallel to the axes

exerted upon the molecule m by all the molecules fi within the
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sphere of molecular activity, by Xe, Ye, Ze, so that JT", Y. Z, are

the components of the elastic force for a displacement unity in the

same directions, we have

Xe =

(10)

29. Developing f(r+ p), and neglecting the terms of a higher
order than those containing p, since the displacements are regarded
as very small, we obtain, recollecting that A|, A??, A, are of the

same order of magnitude as p, while A#, A?/, Az, may be of any order

whatever,

X, =

we also have r2 = Az2 + Ay
2 + Az2

,

A# A + Aty A?? + Az A<T
from which p = - J ^

r

Substituting this value of p in equations (11), we obtain

(11)

(12)

(13)

(14)

/(r)1 As Ay
r r2

(15)
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Similarly, for the axes Y and Z we get,

+
,

(16)

(17)

Putting (r) for VM for f'(r)
- -

;
and m ,

-JL mT~, for their equals Xe9 Ye, Ze, we have
dt ctt

= my = m^
j [ (r) + i> (r) A?

which give the values of the component elastic forces developed in

any molecule of the medium, when the displacements are small.
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30. If the displacement is only in the direction of each axis i

succession, we have the following groups of equations.

Of*: r) + V (r) A?,

Ofy:

F2
= m (20)

Of : = m -
A?,

(21)

31. Combining the above equations, we have

= r, + F, + (22)

From Eqs. (19) we see that the total intensity

of the elastic force developed is proportional to the relative displace-

ment A, and since the axis has been assumed arbitrarily, it can be

said, in general, that the total intensity, e\/X2
-f F2 + ^2

, devel-

oped, is directly proportional to the general relative displacement,



RELATING TO SOUND AND LIGHT. 31

From Eqs. (22) we conclude that the component intensity of the

elastic force developed in the direction of any axis, due to any dis-

placement, is equal to the sum of the three component intensities

developed by three successive displacements along these axes, equal
to the respective projections of the general displacement on these

axes.

32. Of the nine coefficients of A A??, A, given in Eqs. (18),

BIX only are distinct. Representing these by

C = 4>(r)

(23)

we can write Eqs. (22),

Xe =
Ye =
Ze =

B AT? + D A (24)

from which we conclude that the component elastic force developed

along any axis, x, ior example, by a displacement e along any other

axis y is equal to the component elastic force developed along the

axis y by an equal displacement along the axis x.

33. From Eqs. (19-21) we see that when a displacement is made
in any direction, the resulting elastic force is not, in general, in the

same direction. To find whether we can refer the system to rectan-

gular co-ordinate axes, so that when a displacement is made along

such an axis, exceptional elastic forces will be developed, whose

total resultant will be in the direction of the displacement, let , ft, y,
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be the angles which the direction of the displacement makes with

the axes; A, //, and v, the angles which the resultant elastic force

makes with the same axes
;
then we have

cos A =

cos t =

cos v =

cos =

X
+ r2 + z*

Y
+

+

cos (3 =

+ Af +
AT?

+

cos y =

(25)

Since the resultant intensity of the elastic force is proportional
to the displacement, we may let K represent the intensity of the

elastic force corresponding to a displacement equal to unity.
K varying with the direction of the displacement, we can then

place AT?
2 + AC 2 for its representative, e V^T2+ Y*+Z\

and the first of Eqs. (25) will become

Xe
cos /t =

COS [I
=

cos v =

Ye

+ (26)

Substituting the values of X, Y, Z, A A??, AC, derived from
these equations in Eqs. (24), after omitting the common factor e,

we have
JTcos A = A cos a + ^ cos f3 + Fcosy, }

Kcosp = E cos a + B cos + Z> cos y, > (27)^ cos v = ^ cos + Z> cos j8 + (7 cos y. )



RELATING TO SOUND AND LIGHT. 33

Applying the conditions

A =
, /*

=
we have the equations of condition,

(A K) cos <* + ^ cos + .Pcos y = 0, \

E cos a + (5 .AT) cos + Z> cos y = 0, > (28)

+ D cos j3 + ((7 A") cos y = 0; )

together with cos2 a + cos2 -f cos2 y = 1, (29)

which make four equations containing the four unknown quantities

a, (3, y, and jf.

34. In order that Eqs. (28) may be true for the same set of

values of cos a, cos ft, cos y, we must have the determinant

(30)

Multiplying Eqs. (28) respectively by D, F, and E, we get

(AD KD) cos a + DE cos ft + Z>^cos y = 0,
j

<* + (#.F FK) cos + Z^cos y = 0, > (31)

a + Z)^ cos ft + (C# ^^) cos y = 0. )

Placing AD EF = aD, }

BF DE = a'F, (32)

CE - DF = a"E, )

we have

(a JT)Z>cos -f JHFcosa + DEcosft + DFcosy = 0,
j

(0
f

JT)J?ooBj3 + EFcosa H- DEcosft + DFcosy = 0, 1(33)

(a
;/

JE") j^cosy + EFcoscc -{- DEcosft + DFcosy = 0; j

from which (a K)D cos =
(a' ^T) ^ cos /3 }

, ,

= (a" -^)^ cosy = P; j

( }

whence, Cos =
^ ^

(35)



34: ELEMENTS OF WAVE MOTION.

Substituting these values in the first of Eqs. 33, we obtain

EF DE DP

Clearing of fractions, we have

-

-2^2 (K-a") (K-a) = 0. (37)

-D*F* (K-a) (K-a') }

If DEF be positive, supposing

1, that a < a' <C a", by substituting for Kt
in succession in

Eq. (37), oo
, a, a', a", -f <x>

, we obtain

00,

-E*F*(a' -a) (a!' a),

a" -a') (a
1

-a),
a" -a) (a" -a1

),

which, since there are three variations in the signs, shows that

Eq. (37) has three real roots, one lying between a and a', one be-

tween a' and a", and the third between a" and oo . Similarly, if

DEF be negative, the real roots will be found as above.

2. If two of the quantities , a', a", are equal, as, for example,
a' r~. a", Eq. (37) reduces to

(K- a') \[EF(K- a')] {D(K- a)
- EF}

~

which gives a real root between a and a', a second equal to a', and
a third greater than a'.

3. If the three quantities a, a', a", are equal, Eq. (37) reduces to

(K- a^ [DEF(K-a)- E*F* - D*E* - D*FZ
]
= 0, (39)

giving two real roots, each equal to a, and one greater than a.

Each of these real roots of K, being substituted in one of Eqs. (35),

will enable us to find values for each of the cosines between -f- 1

and 1, and hence a given direction for each value of K, or in all

three directions.
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35. We therefore conclude, that the total elastic force de-

veloped by any displacement is not in general in the line of
direction of the displacement, bat oblique to it ; that there

are three directions at right angles to each other, and, in

general, only three, along which, if the displacement be

made, the resultant elastic force developed will be in the

direction of the displacement.
36. These three directions are called principal axes. They are

not specific lines in a body, but simply mark directions along which

the above property exists.

37. The angle which the direction of the displacement and the

resultant elastic force make with each other is given by

cos U =

and, if the displacement be equal to unity, we have

U= Xti
= X cos a + Y cos j3 + Z cos y. )

38. Surfaces of Elasticity. If now distances which are

proportional to the elastic forces developed by a constant displace-

ment, equal to unity, for example, in each direction, be laid off in

all directions from any point of the medium, the extremities of

these lines will form a surface which may be called a surface of

elasticity. But, as for each direction there are two things to con-

sider, viz., the intensity of the elastic force and the angle which its

direction makes with the displacement, we cannot, in general, con-

struct a surface which would unite these two particulars.
39. It will be shown, hereafter, upon what grounds we can dis-

regard, in optics, that component of the elastic force, 7Tsin U9

which is perpendicular to the displacement, and consider, as alone

effective, the component whose intensity is represented by K cos U9

parallel to the displacement.
40. Assuming then, for the present, that the effective elastic

force caused by a displacement equal to unity is given by Eq. (41),

and substituting the radius vector r for the first member, and the



36 ELEMENTS OF WAVE MOTION.

values of JT, Y, Z, from Eqs. (24), and for A A??, A cos
, cos ft

cos y, their values for a displacement unity, we get

r = A cos2 a 4- 2.Z? cos cos /3 + 2^ cos cos y
j

+ B cos2
13 + W cos cos y + C cos2 y, )

* '

the polar equation of a surface of elasticity of the medium.

or // %

Substituting for cos a, cos (3, cosy, their values -, -, -, and

for r its equal V%2+ y
2+ z2, Eq. (42) becomes

8 .

.

-
2 [A& +%2+ Cfe* +2^+ tFxz+ Wyz\.

(43)

41. Assuming that the radius vector is proportional to the

square root of the elastic force, the equation takes the form

+ 2Dyz, (44)

which is the equation of Fresnel's Surface of Elasticity.

42. By assuming each radius vector proportional to the recipro-

cal of the square root of the elastic force, Eq. (42) becomes

1 =. Ax* + Bf + Cz* + 2Exy + 2Fxz + ZDyz, (45)

ivhich is the equation of what has been designated as the inverse

ellipsoid of elasticity, or the first ellipsoid, and is called the ellip-

soid E.

43. Surfaces of Elasticity referred to Principal
Axes. Principal axes are those along which, if the displacement
be made, the resultant elastic forces developed will be wholly in the

same direction- We have seen that, in any homogeneous medium,
there are in general three, and only three, such directions. Making
A?/, A^; A, AC; A, A??, respectively equal to zero in Eqs. (24), and

placing A, B, C, equal to 2
,

2
, c2, respectively, we have

.

E = F = D = 0,

and Eq. (44) reduces to

(z
2

-t- f + z2
)
2 = a2x* + %2 + &# (47)

and Eq. (45) to V + %2 + c2z* = 1. (48)
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FresneFs surface of elasticity, Eq. (47), is of the fourth order,

its equation being of the fourth degree. Figure (3) represents one-

quarter of the principal section made by the plane ac, turned about

the axis b through ,an angle of 90. Taking the axes to be

a = 1.53, = 1.32, c = 1.00,

we may, by Eq. (47), readily construct the principal sections.

Thus, since

r4 = a?x* + TPf + &z\ .'. a2 cos2 a + & cos2 (3 + c2 cos2 y = r2 ;

we have for the intersection by the plane ac, (3 = 90, and

= 2 cos2 a 4- c3 cos2
y = r

' 3 " 2

r' = a cos , and r" = c cos y = c sin

Figure 3,

Therefore r is equal to the hypothenuse of the right-angled tri-

angle on r' and r"
; hence, describe semicircles on a and c

;
draw

any right line from 0, and lay off on it a distance equal to the

hypothenuse on the intercepts of the two circles, and this will be a

point of the curve. Three such points are constructed in tha
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figure. The curve CMA is the intersection of FresnePs surface

with ac\ the curve CNA is that of the ellipsoid whose semi-axes

coincide with and are equal to those of the surface of Fresnel
; 00

and 00' are the traces of the cyclic planes which contain the axis b

of the surface of elasticity and of the ellipsoid respectively. The

principal elasticities in crystals never differ so much as those

assumed above, and therefore, in many cases, the departure of the

surface from the ellipsoid is negligible.

.WAVE S.

44. The elastic forces of the medium, developed by the assumed

arbitrary displacement of a molecule, will propagate the motion in

all directions from the point of initial disturbance. As an ever-

enlarging volume becomes involved in this disturbance, each mole-

cule takes up a motion exactly similar to that of its predecessor,

which it transmits in turn to the next molecule. This transfer is

complete when a single pulse traverses the medium, and is both

complete and continuous when these pulses are successively con-

tinuous.

In this latter case the exciting cause acts for a definite portion
of time. Representing by a series of dots, a

, the position of

Fi^dre 4,

a file of molecules in their condition of stable equilibrium and con-

sidering alone the simple case of rectilineal displacements, the

arbitrary displacement of the molecule m will give rise to the suc-

cessive displacements of the others, and cd and ef will represent the

relative positions of these molecules at the end of a given subse-

quent time t, equal to the periodic time of vibration ; the former,

when the displacements are parallel to the direction of disturbance

propagation, and the latter, when at right angles to this direction.

While, therefore, any molecule m is describing its orbit, the dis-

turbance is being propagated in all directions, and, at the instant

the orbit of m is completed, the disturbance will have reached
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another molecule m', on the same line of direction, which will then,

for the first time, begin to move
;
and the molecules m and m' will,

thereafter, always be at the same relative distances from their origins.

45. While this undulatory motion is being propagated, mole-

cules will be found between m and m', with all degrees of displace-

ment, both as to amount and direction of motion, consistent with

the dimensions and shapes of their orbits. If the velocity of wave

propagation be constant in all directions, the form assumed by the

bounding surface containing the disturbed molecules will be spheri-

cal
;
but if the velocity vary, the form will depend upon the law of

its variation.

46. This continuous transmission in any given direction of a

relative state of the molecules, while the motion of each molecule

is orbital, is characteristic of an undulation.

47. The term phase is used to express the condition of a mole-

cule with respect to its displacement and the direction of its motion.

Molecules are said to be in similar phases, when moving in parallel

orbital elements and in the same direction; and in opposite phases,

when moving in parallel orbital elements and in opposite directions.

More generally, similar phases are those in which the anomalies of

the molecule are the same, and opposite phases those in which the

anomalies differ by 180. (By anomaly is meant the angular dis-

tance from an assumed right line.)

48. A wave is the particular form of aggregation assumed by
the molecules between the nearest two consecutive surfaces in which

.similar phases simultaneously exist throughout. t

A -wave front is that surface which contains molecules only in

the same phase ;
it is generally understood to refer to the surface

upon which the molecules are just beginning to move. The veloc-

ity of a wave front will always be that of the disturbance propaga-
tion.

A wave length is the interval, measured in the direction of wave

propagation, between the nearest two consecutive surfaces upon
which the molecules have similar phases.

The amplitude of the undulation is the maximum displacement

of the molecule from its place of rest.

49. From a consideration of the nature of an undulation, we

.see at once that, if A be the wave length, r the periodic time, and

y the velocity of wave propagation, we will have
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-

'

'. ; V=\, (49)

and the values of F, A, and r are each, theoretically, independent
of the amplitude.

50. To find an expression for the displacement of a molecule at

any time during the transmission of an undulation, let x be the dis-

tance of the molecule from the origin of disturbance, t the time

from the epoch, r the periodic time of the molecule, A, the wave

length, and V the velocity of wave propagation. Now, whatever

be the displacement 6 of the molecule x, at the time t, an equal dis-

placement (neglecting the loss due to increased distance from the

origin) will exist for another molecule at a distance x -\- Vt', at the

time t + t'. This condition gives, whatever be the value of t',

d = <t>(x,t] = <t>(
x + Vt',t + t'). (50)

x + Vt' is the distance from the origin to the wave front at a

time t subsequent to the instant at which it was at x. Hence the

molecule x is behind the wave front a distance Vt x, and the dis-

placement, (x, t), may be replaced by (
Vt x) ;

therefore we
have

d = 4>(x,t) = 0(F*-a;), (51)

as the form of the function.

51. We have implicitly assumed the medium to be in a state of

stable equilibrium -during the passage of the undulation, and, there-

fore, the molecule will necessarily describe a closed orbit about its

place of relative rest. This orbit may, from the circumstances of

the case, be of the most varied character, and, after the energy due

to the disturbance has been dissipated, the molecule will resume its

original place of relative rest, until again displaced by some new

disturbance. It is necessary, in this discussion, to consider those

disturbances alone which are regular and periodic, and to consider

the orbit after it has become determinate. We therefore limit the

discussion to that of the regular periodic disturbance, and the orbit

to that of the ellipse or any of its particular cases, such as the

ellipse, the circle, or the right line.

52. Simple Harmonic Motion. If a point a (Fig. 5)

move uniformly in a circular orbit, tlie distance of its projection
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Tom the centre, upon the vertical diameter, can always be found

From the equation
/o~/ \

(52)

Figure 5.

y a sin
^

+
J,

in which y is the required displacement at the time t, a is the am-

plitude or maximum displacement, r the periodic time, and a the

angle included between the horizontal diam-

eter and that passing through the origin of

motion.

2rrt
The angle

-- - + is called the phase of

the vibration, and may be made of any value

by changing the arbitrary arc #, the time t,

or both together. The same value will apply
to motion along any diameter. Such mo-

tions are called simple harmonic motions.

It may easily be shown that any two simple harmonic motions, in

one line and of the same period, may be compounded into a single

simple harmonic motion of the same period, but whose amplitude
is equal to the diagonal of a parallelogram constructed on the am-

plitudes of the components inclined to each other by an angle equal
to their difference of phase.

53. The Harmonic Curve. If the motion of a point be

compounded of a rectilineal harmonic vibration, and of uniform

motion in a straight line perpendicular to the vibration, the point
will describe a plane curve, which is called the harmonic curve.

Let the vibration be along the axis of y, and uniform motion

along the axis x
;
we will then have

for the ordinates, and

. font
y = a sm (

-

x = Vt

(53)

(54)

for the abscissas, due to the uniform motion. Combining these

equations, eliminating #, and replacing VT by its equal A, Eq. (49),

page 40, we have, for the equation of the harmonic curve,

y = a sfn (-^- + a) ;

\ A /
(55)
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in which A. is the wave length. Substituting for x, x i^, the

value of y remains the same for all integral values of i. The curve,

therefore, consists of an infinite number of similar parts, which are

symmetrical with respect to the axis of x.

Figure 6,

54. To construct the curve by points, divide the circumference

into any number, as twelve, equal parts ; lay off on the axis of ab-

scissas twelve equal distances, corresponding to the positions of the

point in uniform motion, erect ordinates at these points and make
them equal to the corresponding displacements at the given times,

and we have the curve as follows :

\6 1 & 9 10 11 18

55. The varying velocities of a point of a simple pendulum in

motion can be represented by the ordinates of the harmonic curve ;

and because of this analogy all vibrations represented by these

curves are called simple or pendular vibrations. The vibration is

taken to be the complete oscillation, from the time at which the

moving point was in one position until it returns to the same posi-

tion again. By this definition, the duration of the vibration of a

second's pendulum would be two seconds, and not one second.

56. Composition of Harmonic Curves. Let

y' = a sin (~- + ), (56)
\ A. /

y" = I sin
(^-- + ft), (57)
\ A /

b'e the equations of any two harmonic curves, having the same wave

length, but different amplitudes. The resultant value of y will be



RELATING TO SOUND AND LIGHT. 43

y = c sin
(^- +

r), (58)

which is the equation of another harmonic curve, of equal wave

length, but of different amplitude from either of the components.
The values of c and y are given by

c cos y = a cos a -f b cos 0, (59)

c sin y = a sin a -f sin 0, (60)

c = a* + + 2a cos (a 0). (61)

From the last equation we see that c may have any value be-

tween the sum and difference of a and Z>, depending upon the value

of the difference of phase, a 0, of the components.

By a similar process, it can be shown that any number of com-

ponent harmonic curves, of the same wave length, may be com-

pounded into a single resultant harmonic curve having an equal
wave length, but whose amplitude and phase differ in general from

those of any of its components.
57. If the component curves have different wave lengths, they

oannot be compounded into a single harmonic curve ;
but when

their wave lengths are commensurable, they can be compounded
into a periodic curve, whose period is the least common multiple of

their several periods. Thus, in the first case, where the wave lengths

are unequal and incommensurable for the resultant ordinate,

/%TTX \ /2nx J\ /ZTTX \ ,

y = a sin
1-y,- + a) + I sin i-^r + 0) + c sin h + y I +....,

(62)

in which the period is infinite, or the curve is non-periodic.

In the second case, let

m, n, r, being integers ;
then the above equation becomes

/2nrx
y = asn _ + a .Sm r-- c sml-y-

(64)

which, although not admitting of reduction to a simpler form, gives
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constantly recurring, values of y when for x we substitute x -f- A.

The wave length of the resultant curve is therefore A, and the curve

is periodic.

58. The forms of the component curves depend only upon the

wave lengths and amplitudes ;
but their positions on the axis de-

pend on the values of the phase , (3, y, etc. By assigning arbitrary

values to these, we may shift any curve along the axis any desired

part of its wave length. Any such shifting for any one or more of

the component curves will necessarily alter the form of the result-

ant curve, but will not change its wave length.

59. If the wave length of the resultant curve be assumed, the

wave lengths of its components may be all possible aliquot parts of

A, and the number of the possible components is therefore unlimited.

Therefore every possible curve of wave length A, which could be so

constructed from such component curves, would be found among
those produced by placing, along the same axis, an unlimited num-
ber of harmonic curves, as components, with wave lengths A, -JA?

|A, etc., . . .

By varying the amplitudes of the components and shifting them

arbitrarily along the axis, an infinite number of resultants can be

produced, all having the same wave length A. Fourier's theorem

demonstrates that every possible variety of periodic curve, of given
wave length A, can be so produced, provided that the ordinate is

always finite and that the moving point is assumed to move always
in the same direction.

60. A periodic series is one whose terms contain sines or cosines

of the variable, or of its multiples ; thus,

A ! cos x + A
2
cos %x -f A 3 cos 3x -+- . . . . A n cos nx -j-

is a periodic series. This series goes through a succession of values

as the arc increases from to %TT
; for, every term has the same

value at the end and at the beginning of that period, and this con-

tinuously, so that whatever n may be, the period of the function

is 2n.

61. Fourier's Theorem has for its object the determination of

the unknown constants, A
Q ,
A 19 A 2 ,

, . . .B^ B%, B 3 ,
. . . ., and

the determination of the conditions by which any given function,

y = /(#), can be expressed in the form of
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f(x)
= A

o + A
i
cos a + .4 8 cos

+ B sin a; + # sin

)

1

The non-periodic term J is introduced to make the theorem

conform to the most general case. If the function is capable of

expression in periodic terms only, then A
Q
= 0; this fact can only

be determined by considering each special case.

The equation which expresses the mathematical statement of

Fourier's Theorem is

y = y + S
1

,
1 : Cl sin

(
+

,),
(66)

in which / is the mean value of y, and each of the variable terms

represents, by itself, a harmonic vibration of which the period is an

aliquot part of the whole period T.

62, Wave Function. Kesuming Eq. (51),

we see that, since the displacement 6 passes through all of its values

while the undulation advances a distance equal .to its wave length
A, it has the properties of simple harmonic motion, and, therefore,

may be written

6 = ccsin ~(Vt x). (67)

This is called the wave function. By making t vary continu-

ously through all values from t = ^ to t = ~-
,
d will increase

from zero to + , decrease then to a, and finally return to

zero, during the time
^,

which is evidently the interval of time

required for the undulation to pass over the wave length A. Again,

supposing t to remain constant and x to vary through all values

from Vt A to Vt, we obtain again all possible values of the dis-

placement, which values will evidently belong, at the same instant,

to all molecules in the wave length. The following diagram illus-

trates the two cases :

Figure 8.
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By the addition of an arbitrary arc we can cause the displace-

ment to take any one of its values, at any time t, and thus change-
our origin at pleasure.

63. The corresponding expression for the velocity of the mole-

cule in its rectilineal orbit, sometimes called the velocity of the wave

element, in contradistinction to the velocity of wave propagation, is

given by ^n
u = a cos

-y- (
Vt x). (68)

x/

64. The principle of the coexistence and superposition of small

motions is shown in Mechanics to be applicable to planetary per-

turbations. It is, for similar reasons, applicable to the determina-

tion of the resultant displacement of a single molecule, arising

from the concurrent effect of many disturbing causes acting sepa-

rately. The acceptance of this principle is equivalent to assuming*
that the several displacements are so small that their products and

powers higher than the first are negligible with respect to the dis-

placements themselves ;
and it embodies the primary supposition

that the intensity of elastic forces developed varies directly with the

degree of displacement.

65. Wave Interference. If we apply this principle to de-

termine the displacement of a molecule by two disturbing causes,

giving rise to two undulations of the same wave length, we will

have for the first,

6' = a' sin p^ ( Vt
-

x) + -4'1 ; (69)

for the second,

6" = a
"

sin [y (
Vt - x) + A"^

. (70)

The total displacement will be

6' + (5" = (5 = (a
1

sin A' + a" sin A") cos [^ ( Vt - fc)~]

i (71)

+ (' cos A' + a" cos A") sin y (
Vt - x)\,

whicH may be put under the form

= a sm (Vt -x) + A (72)



by placing
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ment of the molecule at the place of meeting, and complete inter-

ference will result.

The diagrams of Figure 9 illus-

trate the composition of two un-

dulations of equal wave length,

having the same phase in the first

case, and opposite phases in the

second and third cases. In AB,
the amplitude of the resultant un-

dulation a is equal to the sum of

the amplitudes of the component

undulations, a' and a"';
in A'B'

and A"B", equal to the difference

of the amplitudes. In A"B", the

displacement of the molecules is

zero, and the two components mu-

tually destroy each other's action. Figure 9,

67. Interference of any Number of Undulations.

1 CASE. When the component undulations have the same

wave length.

Let 6' =' 8m[^ (Vt - x) + A' 1,
L A-

f

-i

-^ (Vt x) -f- ^4" ,A J (7g)

r' = V'
r

fflB| ^(F^-a;) +

etc., etc., ,

be the values of the several component displacements. By addition

we have

6' + 6" + 6'" + etc.

^) L
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The second member may be placed under the form of

sin A cos -r-
(
Vt x) -f a cos A sin ( Vt x)

A. A

r? ff f (80)

= a sin i-
(
Vt -

IK) + A = <J.

From which we conclude that the resultant undulation will

have the same wave length as that of the components, but that in

general the maximum displacement and the phase at the time t will

be different from those of its components.

68. 2 CASE. Component undulations of different wave lengths.

If the wave lengths are different, the displacements are of the

form

which cannot be combined into a single circular function of the

same form. If in addition the wave velocities also differ, they may
V V

be combined if Hence, undulations of different wave
A, A

lengths cannot destroy each other, and the combined effect of sev-

eral undulations upon a single molecule will be equal to the alge-

braic sum of their separate effects. If this sum should reduce to

zero for a given molecule, it will differ from zero for the molecules

immediately preceding and following it.

69. The Principle of HwygJiens. Since the displace-

ment of any molecule is the causa of the subsequent displacement
of other molecules, we may regard the displacement of the mole-

cules upon any wave front as the cause of the subsequent displace-

ment of the molecules upon any other front which the wave

afterwards reaches. We may therefore consider each molecule of

the wave front in any of its anterior positions as being the origin,

and its displacement as the cause of secondary waves, each of which

proceed with the same velocity. The aggregate effect of all these

4
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secondary waves upon any other molecule beyond, or its resultant

displacement, will evidently be the same as that due to the primary
wave itself. This principle is known as that of Huyghens, and,

together with the principle of interference, is exceedingly fruitful in

explaining many of the phenomena of wave motion in sound and

light.

Figure 10.

Let be the origin of disturbance, and BAG the great wave in

any of its anterior positions before reaching a molecule P'; let

AP' = I', AB = AC = I
;
let dz be any indefinitely small part of

the wave front, and the angle made by the wave front with any
right line I drawn from P' to any point of the wave front, at a dis-

tance z from A
;
then

I' = AP' =V(^ 2lz cos 9 + z2
) (81)

= Z z cos 4-
|=

sin2 + etc. (82)

= Z z cos 0, (83)

for all points of BAG near to A, and for which ^ is insignificant.

The displacement at P', due to the secondary waves originating in

dz, will therefore be

, adz . TT , __= T sin -r ( Vt I -f z cos 0). (84)

Replacing AP' by Z, and integrating, we have for the resultant

displacement of P' due to the great wave,

= 2<*' =
jfdz siu^(Vt- cos 6)

(85),

cos 6
-
fi
cos ~ (Vt - I + z cos 0) ;
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and between the limits corresponding to -J- b and I,

a/i . %7rb COS 6 . Vt I /0 _
v

(J = -=---- sm-:
-- sin 2rr-- . (86)

nl cos 6 A A v '

The maximum displacement is therefore

cos

. cos /rtwsm- T -
(87)

70. 1. The above value of the displacement will vary with b,

6, A, and I. When, as in sound, A is very great as compared with b,

^

"
- will be so small that the arc may be substituted for the

sine without material error, and

' =
(88)

which is independent of 6.

2. When A is much smaller than b, as in the case of light, we

have, when cos 6 is very small, and 6 therefore differs but little

from 90 D
, again

- =
<
89

>

At other points, where 6 is not great and cos 6 not small, the

resultant displacement becomes equal to zero when

2nb cos-
J-

-- =
TT, 2n, STT, etc. ;

A 2A 3A
that is, when cos = ^ , ^, ^ , etc.

The greatest resultant displacement, other than that indicated

above, will be found by making in Eq. (87),

=1,
:

'

(90)

and it will be equal to ?
-

;

nl cos B '

and, since the intensity of the sensation is directly proportional to-
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the square of the maximum displacements, we will have the rela-

tion of the intensities,

! 10

[(91)272 ** <

?r
2^ cos2 6 P 47r2 2 cos2

71. In acoustics it will be shown that the wave lengths corre-

sponding to audible sounds will vary from - - = 57' to -

/cO 40000

= of an inch, and therefore there will be no point exterior to an

aperture where the displacement will not occur, and hence the cor-

responding sound be heard. In light, the wave lengths vary
between .000026 and .000017 of an inch, and there will be, accord-

ing to the 2 case, alternations of light and darkness surrounding
the central line drawn from the place of original disturbance to the

centre of the aperture. These zones are called Huyghens* zones,

and will be again referred to in the subject of diffraction.

72. Diffusion and Decay of Kinetic Energy. The

displacement of any molecule due to wave motion of a given wave

length is independent of the periodic time, and, since the orbits of

the molecules are described in equal times when they arise from a

given periodic motion, they will be directly proportional to the dis-

placements or any other homologous lines. The velocities, then,

of the moving molecules being represented by v9 their kinetic ener-

gies will be represented by Then, because these energies are
</

*

transmitted without appreciable loss from the molecules of one sur-

face to those of another, we will have the energies of the molecules

of the two homologous surfaces,

., or = .,"; (92)
A

' A A

that is,
~

: ^-
2

: : r'2 : r2, or varying according to the law of
2 2

the inverse square of the distance. Similarly, we will have

6"r" = <5V, (93)

or the maximum displacements inversely proportional to the dis-

tances to which the disturbance has been propagated.
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73. Reflection and Refraction. It is difficult to con-

ceive, satisfactorily, in what manner the molecules belonging to

two media of different elasticity and density are arranged with re-

spect to each other in or near the bounding surface which separates

them. When they occupy positions of relative rest, the elastic

forces must be mutually counterbalanced and must be equal to those

affecting the molecules within the media. We may assume the two

media to have different densities and elasticities, and the relative

positions of the molecules near the separating surface to be deter-

mined by the action of the equilibrating molecular forces. But
when a disturbance arising in one of the media reaches the surface,

the molecules of the second medium must, in general, have motions

and displacements different from those of the first. If we consider

alone the difference in density of the molecules of the media, we

perceive that the energy in the incident wave will not be wholly

given up by the molecules to their neighbors in the new medium.
In either ca?e, whether the molecules have greater or less density,
a return wave will originate in the incident medium, analogous to

the reflected motion in the impact of elastic balls. Again, if the

elasticity of the media be different, the elastic forces for equal dis-

placements will be different, and thus cause a return wave in the

incident medium. We may therefore assume, for the present, that,

owing to the different elasticities or densities, or both, there will be,

in general, a separation of the incident wave whenever it meets a

surface separating two media of different density and elasticity.

The fact of such a separation is experimentally demonstrated in the

phenomena of sound and light. The velocity of wave propagation
will be shown to be a function of the elasticity and density of the

medium, and therefore the waves, in general, will proceed in the

two media with different velocities.

74. The plane of incidence is that plane which is normal to the

deviating surface and to the wave front.

The plane of reflection is normal to the deviating surface and
to the reflected wave front; it coincides with the plane of incidence.

The plane of refraction is normal to the refracted wave front and
to the deviating surface.

75. Diverging, Convert/ ins/, and Plane Waves.
When the energy of molecular disturbance is distributed among
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the molecules, upon an increasing wave front, the wave is said to

be diverging ; when among those of a decreasing wave front, a con-

verging wave; and when among those of an unchanged wave front,

a plane wave. An indefinitely small portion of the front of any

diverging wave, taken at a correspondingly great distance from the

origin, may, without sensible error, be considered as coinciding

throughout with the tangent plane to the wave front, and consid-

ered as a plane wave. The molecules of a plane wave at any
assumed position are animated by equal parallel displacements, and

undergo all their phases while the plane wave advances a distance

equal to the wave length, measured in a direction perpendicular to

the plane.

76. Differentiating Eq. (67), we have

(Pd 47T2F2= -sr 6 - (94)

Multiplying both members by m, the mass of the molecule, and

replacing m-r^ ^J ^s e(lual U$> the intensity of the elastic force

developed by the displacement d, we have

(95)

whence, U = -
-f F2

. (96)

Hence, when a plane wave is propagated without altera-

tion in a homogeneous medium, its velocity of propagation
is directly proportional to the square root of the elastic force

developed by the displacement of its molecules.

77. Reflection and Refraction of Plane Waves.
Let the incident plane wave AC (Fig. 11) meet the deviating sur-

face at all points, in succession, from A to B. Let V and A be the

velocity of wave propagation and the wave length in the medium of

incidence, and V and A' those in the medium of intromittance.

Let AB = ds, and CB = Vdt. While the disturbance in the in-

cident wave is moving from C to B, the disturbance from A as a

centre will proceed in all directions in the medium of incidence,
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and be found, at the instant considered, upon the hemisphere whose

radius is AD = CB = Vdt, and in the medium of intromittance

on the hemisphere whose radius is AD' = V dt.

Each point in the line AB
will, in like manner, become in

succession a new centre of dis-

turbance, sending secondary
waves into the media of inci-

dence and of iutromittance,

whose radii will, at the instant

the incident wave reaches B, be

Figure n,

equal to V and V multiplied

by the interval of time elapsing
between the instant of arrival of

the wave front at the centre

considered and that of its arrival at B. The surface through B,
which is tangent to all the reflected pulses, may be taken as the

front of the reflected wave, for it will contain more energy than

any other surface of equal area in the incident medium. Similarly,
'the surface through B tangent to all the refracted pulses will con-

tain more energy than any other of equal area in the medium of

intromittance, and may be taken as the front of the refracted wave
at this instant. These surfaces are readily seen to be planes ; hence,

denoting the angle CAB = ABD by 0, and ABD' by 0', we will

have
ds sin = Vdt, ds sin 0' = V dt ; (97)

from which we obtain

sn = --, sin
<f>'
= p sin (98)

which is known as SnelPs law of the

sines
; [i is called the index of refrac-

tion.

78. The angles and
</>'
made by

the wave fronts with the deviating sur-

face are, respectively, equal to the

angles made by the normals to the in-

cident and refracted waves with the

normal to the deviating surface, and Figure 12,
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are called angles of incidence and refraction. The angles of inci-

dence and refraction are measured from the normal to the deviating
surface on the side of the medium of incidence to the normal of the

incident wave, and to that of the refracted wave produced back

into the medium of incidence.

The angle of reflection is measured from the normal to the de-

viating surface to the normal to the reflected wave front, and is

therefore negative. In the reflected wave, since the velocity of

wave propagation is unchanged, \i is equal to unity, and Eq. (98)

becomes
sin = sm </>'. (99)

79. These principles may, in ordinary cases, then be summa-
rized as follows :

1. The planes of incidence, reflection, and refraction are coin-

cident.

2. The sine of the angle of incidence is equal to the index of

refraction or of reflection multiplied by the sine of the angle of re-

fraction or of reflection.

The modifications which take place in polarized light will be

referred to hereafter in physical optics.

80. We see from Art. 77 that the reflected and refracted waves

are plane when an incident plane
wave meets a plane deviating sur-

face. It is evident also, from the

construction, that the reflected

rays are all normal to a plane NN'

symmetrical with MM' with refer-

ence to OX
;
and that the incident

and reflected rays are directed

from their corresponding planes
towards the deviating surface.

The refracted rays are normal to

a plane ER' on the same side of

the deviating surface as the incident wave, and are also directed

towards that surface.

81. General Construction of the Reflected and
Refracted Waves. Let the deviating surface AB (Fig. 14) be

any whatever, and the rays proceed from any origin ; take, in



RELATING TO SOUND AND LIGHT. 57

the medium of incidence, any spherical surface SS', with centre at

0, as the incident diverging wave
; then, from all points I, I', I",

etc., of AB, describe spheres, whose radii are equal to the intercepts

of the rays between SS' and AB.

If, now, tangent planes be drawn

to the deviating surface at I, I', I",

etc., and to the surface SS' at the

corresponding points s, s', s", etc.,

each pair of tangent planes will

determine, by their intersection, a

right line, through which if a

plane be passed tangent to the cor-

responding sphere on the other

side of the deviating surface, it

will be symmetrical with the in-

finitesimal surface of SS' at s with

respect to that of AB at the point

I; and similarly for the other

points. By continuity, these points

of tangency may be considered as

forming the envelope of the re-

flected wave. The direction of the

reflected rays is found by joining

these points with I, I', I", etc.,

and extending the lines toward and beyond the deviating surface.

82. By the proper modification of the radii due to the value of

p, the index of refraction, the envelope of the refracted wave and

the direction of the refracted rays may be constructed.

83. Considering the reflected wave as a new incident wave, the

new reflected wave, by another deviating surface, can be constructed

by an application of the above principles ;
and since reflection may

be considered as refraction whose index is 1, the principle may
be generally stated, that any number of reflections and refractions

may be replaced by a single refraction at a supposable deviating

surface with a properly modified index of refraction.

84. Let DEF (Fig. 15) be any incident wave whose rays are not

necessarily parallel ;
MNP any deviating surface. At some subse-

quent time t the incident wave will occupy some position such as

ABG, FG being equal to EB = DA = 'vt. By the principle

Figure 14.
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established above, abg will be the enveloping surface of the reflected

wave corresponding to ABG-, and a^b^g^ that of the refracted wave,
and both will be concurrent, that is, the phases of the molecular

motions on them will be

similar
; #PGr', #NB',

MA' will be the re-

flected, and ^jPGrj,

Z'jNBj, tfjMAj the re-

fracted rays.

85. Prolong the con-

secutive rays of either

the reflected or refract-

ed waves, say the re-

flected wave abg, until

they meet two and two '

they will be tangent to

the surface j3y, which

is the evolute of abg.

Since the reflected rays

are all normal to abg,

this evolute will corre-

spond to any other po-
sition of the reflected

Figupe I5|

wave, also. The surface

of which a(3y is a generatrix is in optics called the caustic surface.

It is evident that the points of this caustic are not concurrent,

because their distances, being equal to the radii of curvature of abg
from the reflected wave, are themselves unequal; and points, in

order to be concurrent, must be at equal distances from the wave

surface. Whether the caustic be real or virtual, the displacements

of its molecules being either due to that of two rays, or apparently

so, the energy of the molecules, and hence the resulting sensation,

will be greater than that due to but one ray.

86. When the evolute j3y is known, the various possible posi-

tions of the reflected wave can readily be determined. In the ordi-

nary cases considered in optics, the surfaces abg are those of

revolution
;
the caustic is then also a surface of revolution. Sup-

pose abg to be one of the generatrices of the reflected wave, consid-

ered as a surface of revolution, and a(3y to be its evolute ; then, by



RELATING TO SOUND AND LIGHT. 59

the property of the evolute, if the tangent aaa' be caused to roll on

4/3y, each point of this tangent will describe one of the sections of

the reflected wave. Thus, a'b'g', a"(3g", and abg are such sections;

the second of these being of two nappes, tangent to each other and

normal to the evolute at the point (3.

87. The principle that the rays, after the wave has been sub-

jected to any number of reflections and refractions, are all normal

to a theoretically determinable surface, and consequently to a series

of surfaces, of which any two intercept the same length on all the

rays, is principally applicable to the determination of caustic sur-

faces, and to the formation of optical images, and will therefore be

further discussed in that branch of the subject.

88. Utility of Considering the Propagation of the
Disturbance by Plane Waves. In a homogeneous medium,
the arbitrary displacement of a molecule gives rise to elastic forces

whose intensities depend on the degree and the direction of the

displacements, and whose directions are not, in general, those of the

displacements. In Art. (35) we have seen that the displacements
must be made only in exceptional directions, in order that the elas-

tic forces varying directly with the degree of the displacement
should be wholly in those directions. Should the orbit of the dis-

placed molecule be curvilinear, it is evident that, at each point of

its path, the elastic forces developed would vary both in direction

and intensity, and thus the general problem becomes one of extreme

intricacy.

89. If, however, it be possible to limit the discussion to that of

molecules in the same plane, all actuated by equal and parallel dis-

placements, the variation as to direction of the elastic forces may,

perhaps, be eliminated. It has been shown, Art. 76, that when a

plane wave is propagated without alteration in a homogeneous me-

dium, the velocity of propagation is directly proportional to the

square root of the elastic force developed by the displacement.
Hence the importance of deducing from the general equations (18)

the corresponding equations applicable to the vibratory motions

propagated by plane waves.

90. At the time t let r be the distance of the plane wave, in a

homogeneous medium, from the origin of co-ordinates ;
e the dis-

placement of the molecules whose co-ordinates are x, y, z
; |, 77, ,
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the projections of e on the rectangular co-ordinate axes
;
and , ft y,

the angles made by the displacement with the axes, respectively.

We then have e = 6 sin
-^ (

Vt r) ;

o__

=. 6 cos a sin -y- ( Vt r) ;A

77
= (5 cos /3 sin -r- (Vt r) ;

= 6 cos y sin
-y- (

F^ r).

(100)

(101)

Let r + Ar be the distance of the plane at a subsequent instant

from the origin, and I, m, n, the angles made by the normal to the

plane with the axes, then

r = x cos I + y cos m + z cos n, (102)

Ar = A# cos I 4- A/ cos m + Az cos w. (103)

From Eq. (101) we have

-f- A| = d cos sin
-^- (

Vt r Ar)

= d cos a Liin .(Vt-r) cos ~ Ar
A

277 . 27T
cos ~Y (

V\t r) sin Ar
;

from which, and similarly for the axes y and z9 we have

A = 6 cos sin ( Vt r) (cos
-y-

Ar - 1
j

(104)

27T
, _, . . 2n A

cos -y- (
F# r) sin -r- Ar I,A A

2rr , T7 x
/ 2rr A

AT; = d cos j3 sm -r- ( Fif r) ^cos
Ar

cos -T- (Vt r) sin Ar L
A A,

A = d cos y sin -r-
( F^ r) (cos -y-

Ar 1
)A \ A /

* 2?r .

x
. 2rr

cos -v- ( FP r) sin Ar .

A A
J

.,

(105)
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Substituting these values in Eqs. (18), and, since the medium is

homogeneous, the sums arising from the substitution of the second

part of the values of A, A??, A and which are of the form

n

(r) sin ~ Ar,
A,

~ sin -
Ar,

(106)

,
. A?/ Az 2n

r) -= - sin -r- Ar,
r2 A

, x A# Aw . 2rr

(r) 3-^ sin Ar,
r A

.-
2
- sm Ar,

r) -t sin -

Ar,

r A

all reduce to zero, because they are formed of terms which, two and

two, are equal, with contrary signs ; for, to the values of A#, ky, Az,

equal, with contrary signs, correspond values of Ar which are also

equal and have contrary signs. Then, replacing cos -r- Ar by its
At

*
equal, 1 2 sin2 ~ Ar, and 6 sin -^ ( Vt r) by its equal e,A A

Eqs. (18) become, for plane waves,

= ~ = cos

- cos {3 Zptf) (r)
-

Y= ^ = cos

sin2 - Ar + cos y
//

A# AZ . TT

r- sm2
T

r2 A

sin2 Ar

i

I

4- cos j3 E^ (r) + i/> (r) -^- I
sin2 ^ Ar

N Aty Az . ?.

+ cos y Sft T/J (r) -^-3
sm2 -

Ar,
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4- cos pzp'ip (r)
-- sin2 Ar

4- cos y Sf* If (r) + V (r) -^
\ sin2 An

(107)

91. The conditions for the propagation of the plane wave with-

out change are

- = ' = '-
(108>cos cos j3 cos y

Substituting, in Eq. (107), for Ar its equal,

Az cos -f- Ay cos m -f A2 cos w = Ar, (109)

and substituting in Eqs. (108) the values of X^ JT19 Z^, thus ob-

tained, we will have two relations which, with

cos2 a -f cos? -h cos2 y = 1, (110)

will enable us to determine the angles , /?, y, which the displace-

ment should make with the axes, in order that the propagation of

the plane wave may be possible.

92. Because of the equality of the coefficients of cos j3 and

cos a in the first and second of Eqs. (107), and of cos J3 and cos y
in the third and second, and of cos a and cos y in the third and

first, we can, by substitutions and reductions similar to those em-

ployed in Art. 33, deduce corresponding principles, and hence

determine that, for each direction of the plane wave, there corre-

spond, for the molecular displacements, three rectangular directions;

such that the -plane wave may be propagated without change, andi

that these three directions are parallel to the three axes of an ellip-

soid whose equation is,
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2xz

l(l>(r) + 1>(r)^- |sin2^Ar

A^2

r2 J
A# Ay ^ 2

TT

(r)

=1.

5 sin2
T Ar

f" A

^ g
sin2

^
Ar

This is called either the inverse ellipsoid or the ellipsoid ofpolar-
ization. Having also the relation expressed in Eq. (109), we see-

that the coefficients of Eq. (Ill) depend upon the angles I, m, n,

which determine the direction of the plane wave, upon certain con-

stants which define the constitution of the medium, and upon the

wave length. The velocity of propagation is inversely proportional
to the length of that axis of the ellipsoid to which the molecular

displacements are parallel.

93. Relation between the Velocity of Wave Propa-
gation of Plane Waves and the Wave Length in
Isotropic Media. All directions heing identical in isotropia

media, we will assume the plane wave normal to the axis of x. We
then have Ar = A#, and

and Eqs. (107) reduce to



(113)

4 ELEMENTS OF WAVE MOTION.

X
l
= cos Sp 0. (r) + VM f-

sin2
^ Az,

Fj = cos (3 I,fi\ (r) + V (^) -|- sin3
^ A,

t

1

I

(r) -f -0 (r) sin2
j

Ao; :

and the equation of the ellipsoid to

?in2 Ao;

and, since all directions perpendicular to the axis of x are identical

with reference to the plane of the wave, we have Ay = A, and

Eq. (114) of the ellipsoid becomes one of revolution about the axis

of x. Whence, we conclude that, in an isotropic medium, a plane

wave normal to a given direction can be propagated without change,

whenever the molecular displacement is parallel or perpendicular to

this direction. To any one direction of normal propagation in such

a medium, there corresponds an infinite number of waves with

transversal vibrations, having the same velocity, and but one wave

with longitudinal vibrations whose velocity is different from those

with transversal vibrations.

94. For the wave with longitudinal vibrations, we have

a = 0, = y = 90,

=X
t
= ZP * (r) + i> (r)

TT

sin*

and, from Eqs. (96) and (107), we have

V* = S (r) + V (r) -f]
sitf

\
A*. (116)
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In Acoustics, it will be shown that sound is due to longitudinal
vibrations of the medium. This equation will then be applicable in

all cases of sound arising from such vibrations, and will be referred

to, in that branch of the subject. In Optics, it will be shown that

transversal vibrations only are efficacious in producing light.

95. For waves with transversal vibrations in isotropic media,

the velocity is independent of the direction of the displacement
We can then suppose the displacement parallel to the axis of y, ana

thus have
a = y = 90, = 0,

r
t
=

and F2
A2 r A= SM 10 (r) + V (r)

--
I sin2 Aas.

(117)

(118)

This equation is applicable in light, for the determination of

wave velocity in isotropic and homogeneous media, and will be used

hereafter in determining the velocity of light propagation.

By developing sin2 -r A# into a series, we find
A,

Substituting this in Eq. (118), we obtain

72 =
* (119)

in which a, b, c, ---- have for values,

a=

c =

rf= -

(120)
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These constants depend only on the constitution of the medium,
and decrease very rapidly in value, for Az is always a very small

quantity. If the wave length be not excessively small, if it sur-

passes a certain value which observation only can determine, the

terms of the second member of Eq. (119) will have very rapidly

decreasing values, and we will obtain an expression approximately
near to V2

by taking only the first few terms. Hence, a must be

positive, and, since observation shows that the most refrangible

rays are those of the shortest wave length, and that, as a conse-

quence, V decreases with A, b is necessarily negative.

96, Hence, in isotropic media, the elasticity being uniform in

all directions, the form of the wave surface will be spherical, and

when the displacements are longitudinal, its radius at the unit time

from the epoch will be the value of V obtained from Eq. (116) ;

when the displacements are transversal, the radius will be the value

of V in Eq. (118). The former relates wholly to waves of sound,
and the latter to those of light.

The subsequent discussion will now apply to transversal vibra-

tions alone, and the conclusions derived belong therefore to the

transmission of light undulations.

Experiment shows that the media which transmit the waves of

light are not in general isotropic, and as a consequence the form of

the wave surface will not be spherical. We will, therefore, now
seek the form of this surface in the general case, and make use of

the properties of plane waves for this purpose.

97. Plane Waves in a Homogeneous Medium of
Ttiree Unequal Elasticities in Rectangular Direc-
tions. In the plane wave, the following conclusions have been

deduced :

1. The displacements of the molecules, in each position of the

same plane wave, must be rectilineal and parallel to each other and

to their original directions.

2. The elastic forces developed by these displacements must be

either in the directions of the displacements or alone efficacious in

these directions.

3. The propagation of the plane wave unaltered is then

possible.

These conclusions involve, as consequences, a constancy of ve-
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locity of propagation when the plane wave is unchanged in direction,

and a variation in the velocity as the direction is changed. Hence,
if the elasticities of a homogeneous medium differ in all directions,

and we suppose plane waves, having all possible positions, originate
at any point m of an indefinite medium, these plane waves, at the

end of a unit of time, will be at different distances from m. The
surface which is the envelope of all these plane waves at this instant

is called the wave surface.

98. Let a > I > c

be the principal axes of elasticity of such a medium. Then 2
,

Z>
2
,

c2
,
will measure the elastic forces developed in these directions by a

displacement equal to unity, and any of the surfaces of elasticity

heretofore determined can be used to obtain the elastic forces devel-

oped by an equal displacement in the direction of the corresponding
radius vector of the surface. The velocity of wave propagation

being proportional to the square root of the elastic force, Eq. (96),

its value can be found when the elastic force due to the displace-

ment in any direction is known.

99. Fresnel made use of the single-napped surface of elasticity

whose equation is

&# = r 4
; (121)

but for plane waves, the inverse ellipsoid of elasticity or first

ellipsoid,

4- %2 + cW = 1, (E)

together with its reciprocal ellipsoid,

r2 ^ z2

can be more readily used, because of its better known properties.

The squares of the semi-axes of (W) and of the reciprocals of (E)
are the principal elasticities of the medium.

100. There are two cases to consider:

1. The plane of the wave contains two of the principal

axes, and hence is one of the principal planes of the medium.

The plane cuts the ellipsoids in ellipses whose semi-axes are either

two of the principal axes. Whatever be the direction and amount of
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the displacement, it may be replaced by its components in the di-

rection of the axes proportional to cos a and sin ,
a being the

angle made by the displacement with either axis.

Considering these separately, we see: 1, that each will commu-

nicate to- the molecules in the adjacent plane analogous rectilineal

motions which will be propagated without alteration of direction;

2, that the elasticities, and hence the velocities of propagation

which belong to these two, are different, and that after a time there

will be two series of molecules situated in parallel planes, parallel

also to the primitive plane, which will contain all of the original

energy ; 3, that the vibrations of the molecules in these two plane

waves will be at right angles to each other.

101. 2. The plane wave is any whatever. The sections

of the ellipsoids will be ellipses, but will not in general contain

either of the axes of the ellipsoids. There will then be no direction

of the displacement that can give a resultant elastic force in the

direction of the displacement. It is, therefore, essential for a rec-

tilineal oscillation of the molecule and for a consecutive transmis-

sion of this oscillation, that there should be no tendency of the

rectilineal displacement to be deflected on either side, but that the

line of the resultant force should "be projected upon the displace-

ment. As it is not in general in the plane, but oblique to it, it can

fte resolved into two components : one normal to the plane, which

is not effective in light undulations ;
and the other, which is alone

efficacious, in the direction of the displacement. In each elliptical

isection there are two such directions, which are named singular

'directions^ and which are perpendicular to each other. Assume any

plane section through the centre of (E) ;
the elasticity measured by

the squares of the reciprocals of the radii-vectores is the same to the

right and left for the two axes of the section, and is the same only

for them. Through either of the axes pass the normal plane to the

section ;
it will cut all the parallel plane sections in their homolo-

gous axes. With reference to this normal plane, the radii-vectores,

.and therefore the elasticities of each section, are symmetrical.

Hence, if the displacement be along one of the axes of the section,

the total elastic force will be in the normal plane, and will be pro-

jected on the axis of the
'

section. And since the ellipsoid semi-

diameters are inversely as the velocities of propagation, the recipro-
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cals of the axes will measure the velocities of wave propagation.
Hence is established the fact that for each section there are two of

these singular directions, and that they are rectangular. These two

singular directions perform the same function for the vibrations of

the plane wave as do the axes of elasticity themselves when the

plane wave contains them. Each vibration is replaced by two others

in the direction of the singular directions, and these two compo-
nents proceed in the medium without change of direction, but with

different velocities, so that there are then, in the general case, two

plane waves parallel to each other and to the original plane wave.

If a be the angle made by the displacement with one of the axes,

the component displacements will be proportional to cos and

sin ,
and the elastic intensities to cos2 cc and sin2 . Whatever

may be the direction of the original supposed vibration in the plane

wave, the two plane waves which replace it are always the two above

designated.

102. If the plane of the wave coincides with either of the circu-

lar sections of the ellipsoid, the plane wave will be propagated
without alteration, whatever be the direction of the displacement,
with a velocity equal to #, the reciprocal of the mean semi-axis of

the ellipsoid.

103. The Double-Napped Surface of Elasticity.
If through the centre of (E) we pass any plane, and on the normal

to the section at the centre set off distances inversely proportional
to the semi-axes of the section, the locus of all these pairs of points
is called the double-napped surface of elasticity. For, each radius

vector measures the velocity of propagation of one of the plane

waves, arising from a displacement in the plane of section, and the

square of each of these normal velocities is the measure of the elas-

tic force developed by the component displacement along the axes

of the section.

104. If through each of the points so determined planes be

passed parallel to the corresponding plane of section, the envelope
of all these planes will be, by definition, the wave surface. Hence,
the latter can be constructed by points from this surface of

elasticity.

105. To get the polar equation of the latter surface, let us take

for co-ordinate axes the principal axes of the medium
;
let Z, m, n^
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be the angles made by the normal to the plane wave with these

axes, x, y, z, respectively ; , ft y, those which OLC of the axes of

the ellipse of section make with the same axes
;
then we have

cos a cos I + cos )3 cos m + cos y cos n = 0. (122)

The elastic force developed by a displacement parallel to the

axis of section is projected on the plane of the wave parallel to this

displacement, and its components are

X a2 cos a, Y = & cos ft Z = c2 cos y. (123)

The cosines of the angles which this elastic force makes with the

axes are then proportional to these values. An auxiliary right line

perpendicular to the direction of the elastic force and to the dis-

placement will lie in the plane of the wave, and if u, v, w, be the

angles which it makes with the axes, we will have

a2 cos a cos u -\- b2 cos j3 cos v + c2 cos y cos w 0, \

cos a cos u + cos (3 cos v + cos y cos w = 0, I (124)

cos I cos u -f cos m cos v + cos n cos w = 0.
)

Representing the velocity of propagation of the plane wave by

V, we have
V2 = a2 cos2 + W cos2 j3 + c2 cos2 y. (125)

Combining the above equations, and eliminating the quantities

, ft y, u, v, tv, we will have an equation containing V, I, m, n,

which will be that of the surface required. To eliminate u, ?;, w,

we will make use of the method of indeterminate coefficients ; thus,

multiply Eqs. (124) by B, A, and unity, respectively, add the three

resulting equations, and from the conditions for B and A that the

coefficients of cos v and cos w shall reduce to zero, we will have

(A -f Ba) cos a -f cos I = 0,
J

(A + BP) cos + cos m = 0, V (126)

(A 4- Be2
)
cos y + cos n = 0. )

Multiply these by cos ,
cos 3, and cos y, respectively, add,

and reduce by Eqs. (122), (125) ;
we will have

Q. (127)
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Substitute this value of A in Eqs. (126), and we have

cos I = B
(
F2 a2

) cos a, }

cos m = B
(
F2 2

)
cos j3, V (128)

cos w = ^
(
F2 c2

)
cos y. )

From which we get

cos / cos m cos n
F2

cos cos ]3 cos y

cos2
Z cos2 m cos2

f / T7*O 19\O "T
a2

)
3 T

( F2 J2)
2 ^

(
F 3 c2)

2 J

(129)

Replacing cos
, cos 0, cos y, in Eq. (122), by their propor-

,. , .... cos I cos m cos n
tional quantities, , -, 8

we have

wL/O V
_ V/Vk^ ffV _ -WVKJ IV ^ y . ^ _ V

(IdU;

the polar equation of the double-napped surface of elasticity, in

which F is any radius vector.

106. The Wave Surface. Through any point of the sur-

face of elasticity pass a plane perpendicular to the radius vector at

that point, and let r, A, p, v, be the polar co-ordinates of any point
of the plane. The equation of the plane will be

cos I cos A + cos m cos fi -j- cos n cos v = (131)T

"We have also, as equations of condition,

cos2 1 4- cos2 m 4- cos2 n = 1, (132)

cos2 ? cos2 m cos2 n /IQQ\

The wave surface is the enveloping surface of the planes given

by Eq. (131), and its equation can be determined by eliminating F,

Z, ??i, n, and finding an equation between r, A, p, v. To do this,

differentiate Eqs. (131), (132), (133), regarding cos I and cos m as

independent variables, and we will have
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,
d cos ft 1 dV

cos A -f cos v -

7
cos ? -f cos n

6? COS I

d cos ft

*? COS I

r d cos I'

COS Z COS ft (? COS ft (134)

72 _ 2

d cos

cos2 cos2 m cos2 ft

cos m cos ft cos n

^ cos ft 1 dV
COS JU -f- COS V -7

- = j .

d cos m r d cos m
d cos ft

cos w + cos ft -j
- = 0,d cos m

cos2 m cos2

(J72_#2)2
+
(F2~~

rfF

(
72 _ 02

+

(135)

i /\w m T i
u cos n a cos n **, , , ,,.

107. To eliminate -= 7, -=
, ,, , multi-

d cos I d cos m d cos I d cos m
ply Eqs. (134) by 1, A, and 5, respectively, add the resulting

equations together, and perform the same operations on Eqs. (135).

Supposing the indeterminate quantities A and B to have such

d cos ft d cos ft 6? F
values as will make the coefficients of

-j , equal to zero, we will have
dcos m

cos A -f- A cos I = B

cos \i + A cos in = ^

cos J
' d cos m' <? cos

*"

cos

7?F= K

cos v + ^4 cos ft = B

cos2 ? cos2 m

F2

cos m
V*

COS ft

cos2 ft

^)8J\

(136)

Multiply the first three of the above equations by cos ?, cos my
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and cos n, respectively, add the resulting equations, and reduce by
Eqs. (131), (132), (133) ; we wiU have

A + - = 0. (137)

Squaring the first three of Eqs. (136), and adding, we get, after

reduction

1 + 2J
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whence, dividing by r2 F2
, we have

cos2 A cosy cos2
i;

+

the polar equation of the wave surface.

108. A more advantageous form for discussion can be obtained

by subtracting the identical equation,

1 _ COS2 X COS2 [I COS2 V
fiAA\

^
-

~fi I

--
^2"

"I
--

^T~>

from the equation above, by which there results

a2 cos2 A #2 cos2 i c2 cos2 v

109. To obtain the equation of the wave surface in rectangular
co-ordinates substitute for cos A, cos \i, cos v, and /*, their equals,

-, -, -, and A/#2 + y
2 + z2

', whence, we have
T T T

- P (c
2

,

= 0.
j

^ >

This equation being of the fourth degree, the surface is of the

iourth order, and, as will be shown hereafter, consists of two dis-

tinct nappes, having but four points in common.

110. If two of the velocities become equal, as, for example,
Jb c, the equation gives

a* + 02 + s? = fl, (147)

aW + Z>
2
(y

2 + z2
)
= aW, (148)

which shows that the wave surface, under this supposition, consists

-of a spherical surface and that of an ellipsoid of revolution tangent
to the sphere at the extremity of its polar axis.
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Finally, if the three principal velocities become equal, or a = 5

= c, as in isotropic media, Eq. (146) becomes

y* + if + 2 _. ^ (U9 )

and the wave surface becomes spherical, as has been heretofore

shown.

111. Construction of the Wave Surface by Means
of the Ellipsoid (W). Let us suppose that the ellipsoid (W),

x* y2 z2

jjl
+ 5 + 31-l, (150)

be cut by any plane through its centre, and that distances be laid

off on the normal equal to the semi-axes of the elliptical section.

Referring to the construction of the double-napped surface of elas-

ticity by means of the ellipsoid (E),

## = 1, (151)

we see that in designating the polar co-ordinates of the points con-

structed by the aid of (W) by r, k, p, v, the equation of their loci

can be obtained from the equation of the double-napped surface,

cos2 m

by substituting for F2
,

2
, J2

, c2, I, m, n, respectively,
-
2 ,
-
2 , ^, -,

A, j^, v. We thus obtain

= o, (153)

2 COS2 A J* COS2 |W ,

C2 COS2 V

-^zr^ + tstrp + TJ^T?
=

'

which is the equation of the wave surface. Hence, points of the

wave surface can be constructed from the ellipsoid (W) in precisely

the same manner as points of the surface of elasticity from the

ellipsoid (E), except that in the former, distances equal to the semi-

axes are laid off on the normal, and in the latter the distances are

equal to the reciprocals of the semi-axes.
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112. Direction of the Vibration at any Point of
the Wave Surface. Let us consider any plane wave tangent
to the wave surface; the displacement propagated by this plane
wave makes the angles a, ft y, with the axes

;
the radius vector of

the wave surface at the point of tangency makes with the axes the

angles A, //,
v therefore the angle between these two lines will de-

termine the required direction.

Eliminate in Eq. (129) the angles I, m, n, by means of the first

three of Eqs. (140), which, with the last of Eqs. (136), will give

cos A cos //

cos j3

cos v

cos y

/ cos2 A
I / 9 19\9 I

cos2 v

cos2 m cos2 n
~~^2\2 ~*~

I 172 _ A2\2 "*" 7 F2 />S

F;
/ i_ i_""

r \ BVr
~
^^72'

(155)

whence,
cos A

^^"S

cos //

COS V

cos a

cos j3

cos y

(156)

Substituting in Eq. (143) of the wave surface, we have

/ F2

cos a cos A -f- cos )3 cos \i -f- cos y cos v =
\J 1 -

(157)

In the figure, let M be any point of

the wave surface, OM the radius vector,

and OP the perpendicular F on the tan-

F o
gent plane to the wave surface ;

- - is

Figure 16.



RELATING TO SOUND AND LIGHT. 77

/ F*
then the cosine of POM, and A / 1

2
- is its sine

; hence, OMP

is complementary to POM, and therefore the vibrations at M
are directed along the line PM. We conclude, therefore, that the

direction of the vibrations of the molecule at any point of the wave

surface is along the projection of the radius vector on the tangent

plane at that point.

When the tangent plane is normal to the radius vector, as is the

case at the extremities of the axes, this determination is not appli-

cable, but the direction is in these cases easily found. The plane

OMP, which contains the radius vector and the direction of the

corresponding vibration, is called the plane of vibration.

113. Relations between the Directions of Normal
Propagation of Plane Waves, the Directions of
Radii- Vectores of the Wave Surface, and the Direc-
tions of Vibrations. By the preceding theorem we have seen

that, in any plane wave whatever, the normal to this plane, the

direction of the vibrations in this wave, and the radius vector drawn

to the wave surface at the point of tangency, are all contained in

the same plane. Besides, for each normal direction of propagation

of a plane wave, there correspond for the vibrations, two directions

parallel to the axes of the elliptical section of the ellipsoid (E)

made by a parallel plane. These directions, therefore, being per-

pendicular to each other, the planes which contain, at the same

time, the same direction of normal propagation, the two vibrations,

and the two corresponding radii-vectores, are rectangular.

114. Since the wave surface has two nappes, each radius vector

will give two directions for the vibrations. We will now show that

the planes which contain a radius vector and the directions of the

two corresponding vibrations are also rectangular ;
and for this pur-

pose we shall show that the two vibrations which correspond to the

same radius ve'ctor are contained in the two planes passing through
this radius vector and the axes of the elliptical section, that a plane

perpendicular to the radius vector cuts out of the ellipsoid (W).
115. Let 0, i/>, %, be the angles made by one of the axes of this

elliptical section with the co-ordinate axes
;

it is then necessary to

demonstrate that the three lines (, ft y), (A, p, v), (<p, ^, %), are

all in the same plane.



78 ELEMENTS OF WAVE MOTION.

Eq. (129), which gives the relations existing between the angles

, )3, y, made by one of the axes of ellipsoid (E) with the co-ordi-

nate axes, and the right line Z, m, n, perpendicular to the elliptical

section, can be applied to the analogous case of the elliptical section

of (W) and the normal radius vector, by replacing in this equation

F2
, , ]3, y, I, m, n, a2

,

2
, c2, by -^ $, V, X> A

> P> v
>
~
2 >

Jp> #>
respectively, which will give

Let the auxiliary right line defined by the angles (A, B, C) be

drawn perpendicular to the two right lines (A, \L, v) and ($, V>, %)
we will have

cos A cos A -f cos B cos p + cos C cos v = 0, |
. .

cos ^4 cos < + cos B cos V + cos C cos % = 0.
j

Replacing, in the last equation, for cos </>, cos V>, cos x> the

quantities proportional to them in Eq. (158), we have

a2 cos A ff cos \i D c2 cos v n n /1 nx
-g g

cos ^4 -\ g ^-
cos .6 H g 2

cos ^ = 0. (160)

Adding this to the first of Eqs. (159), we have

cos A cos 11 cos v

and recollecting that the relations

cos /I cos cos
(162)

cos a cos ]3 cos y

exist, we have finally

cos cc cos A + cos ]3 cos 5 + cos y cos (7 = 0. (163)

Hence, the three right lines (, /3, y), (A, /*, v), (0, ^,
%), being

perpendicular to the right line (A, B, C), are all contained in the
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same plane, and therefore we conclude that the planes which con-

tain, at the same time, the same radius vector, the two vibrations,
and the two corresponding directions of the normal propagation,
are rectangular.

116, Discussion of the Wave Surface.
Eq. (146),

Resuming

& (a
2 + 2

)
22 + W = 0,

and making in succession x = 0, y = 0, 2 = 0, we get for the

sections made by the co-ordinate planes yz, xz, and xy, respectively,

(if + z2 - 2
) (%2 + cW - bW) = 0, (164)

= 0, (165)

= 0. (166)

Remembering that a > & > c, we see that the section in the

plane yz will be a circle whose radius is , entirely outside of an

ellipse whose semi-axes are b and c. The section in the plane xy
will be a circle with radius c, entirely within the ellipse whose semi-

axes are a and b. That in the plane xz will be a circle with radius

Figure \7,

#, intersecting at four points the ellipse whose semi-axes are a and c.

The axis of. x pierces the surface at distances equal to 5 and c

from the centre, that of y at distances of a and i c, and that of

2 at & and #.

117. The surface of elasticity of two nappes cuts the axes in the

same points. These principal axes of elasticity have in turn repre-

sented the square roots of the elastic forces developed along the
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three axes of elasticity, the principal velocities of wave propagation,

the axes of the ellipsoids, and now serve to fix points on the surface

of elasticity and on the wave surface.

118. Let Eq. (146) be represented by L = 0, and the angles

which a tangent plane to the surface at any point makes with the

co-ordinate planes xy, xz, yz, by A, B, C, respectively ;
then we will

have
1 dL 1 dL ~ 1 dL ,.,,,-A

cos A = 7-, cos J? = -
-T-, cos C = - -

-j- , (167)
o> dz t* dy u dx '

in which, - = = .

(168)w
/(dirt IdL^ IdLV

v-W) +%)+(*)
Taking the differential coefficients of L with respect to x, y, z,

we will have

(169)

For y = 0, the point of tangency is in the plane xz, and we

have

(170)

+ c2*2) + &te
(a:

2 + z* - a* - S2), I

the second equation showing that the tangent plane is normal to

the plane xz.

For y = 0, the equation of the surface gives

a? + ^2 _ j2 = o, 2^ + ^2 _ ^2^2
_

; (171)

whence, for the co-ordinates x and zs we have
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x
* -

(172)

which are real so long as a > b > c. There are then four points

of intersection in the plane xz. Substituting these values in

Eqs. (167), we obtain

cos A = -, cos = cos =* (173)

119. The interpretation of these indeterminate values of the

cosines is, that at the points considered, a tangent plane to the

wave surface may have any position whatever with respect to the

co-ordinate planes. This property shows that these points are the

vertices of conoidal cusps, each having a tangent cone. These

points, called utnUlics, belong to the exterior and interior nappe of

the wave surface, just as the vertex of a cone is common to its

upper and lower nappes.

120. The equation of the right lines joining these points, 01,

01', through the centre in the plane xz is

z =

which shows that the lines

are normal to the circular

sections of the ellipsoid

(W). The lines themselves

are called axes of exterior

conical refraction.

121. If tangent lines

be drawn to the ellipse and

circle, as MN, M'N ;

, they
will be parallel to each

other, two and two, and

symmetrically placed with

respect to the axes OX and

OZ. The equations of

these lines can easily be shown to be

(174)

= xl

Figure 18,

-c2 ' (175)
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and hence the equation of the line drawn from perpendicular to

the tangent to be

'-\/rir^
x' (176)

which shows that these lines are normal to the circular sections of

the ellipsoid (E).

122. From' the properties of this ellipsoid, we see that a plane
wave perpendicular to one of the right lines MMj, M'M/, and at the

same time perpendicular to xz, can be propagated without altera-

tion, whatever may be the direction of the displacement in its plane,
and that the velocity of propagation of this plane wave is independ-
ent of the direction of the displacement. The lines MM,, M'M/,
are called the optic axes of the medium, or axes of interior conical

refraction.

123. We see, by comparing Eqs. (174) and (176), that the lines

01 and OM differ by the factor - in their tangents. This ratio is

always very nearly unity, and therefore the lines have nearly the

same direction.

124. The planes drawn through the four tangents MN, M'N',

etc., perpendicular to the plane xz, are tangent to the wave surface

along the circumferences of circles, which are projected in the lines

MN, M'N', etc. To show this, let

F(x, y,z) = (177)

be the equation of the wave surface
; then, for points in the plane

perpendicular to xz, we have

J -pj

j- = y(W + b"f + <?#) + Vy (# + y
2+ z*) V (a

2 + c2) y = 0.

(178)
which can be satisfied by placing

y = 0, (179)

and (a
2+ #>) x

2
-f Wf + (b

2+ c2) z* #2 (a
2+ c2) =0. (180)

The first of these equations gives the points of contact in the

plane xz
;
the second represents an ellipsoid. If we combine the

equation of the ellipsoid (180) with the equation of the wave sur-

face, eliminating #
2
, the resulting equation will be the projection on

the plane xz of the intersections of these surfaces, and since the co-
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ordinates of the points projected satisfy the condition, -=-- = 0, all

y

the points of the wave surface in the tangent plane which is per-

pendicular to xz, will be obtained from this intersection and projec-

tion. The resulting equation after reduction can be put in the

form of

. = 0. (181)

This equation can be satisfied by placing each factor separately

equal to zero, and each will then be the equation of a plane passed

through one of the tangent lines MN", M'N', M,N"i, M/N/; hence,

each of the four planes touch the surface in those points determined

by its intersection with the ellipsoid, and it is readily seen that

these curves are the circular sections of the ellipsoid, Eq. (180).

The four planes

are called the singular tangent planes of the wave surface.

125. The circles are, in fact, the

edges of the conoid al or umbilic cusps,
determined by the surface of the tan-

gent cones, reaching their limits by
becoming planes in the gradual in-

crease of the inclination of their ele-

ments, as the tangential circumference

recedes from the cusp points.

It thus appears that the general
wave surface consists of two nappes,
the one wholly within the other, ex-

cept at four points, where they unite.
FJEure 19.
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Fig. 19 represents a model of the wave surface, with sections made

by the co-ordinate planes, so as to show the interior nappe.

126. Relations between the Velocities and Posi-
tions of Plane Waves with respect to the Optic
Axes* For each direction of normal propagation, two plane waves

travel with different velocities, determined, as we have seen, by the

equation of the surface of elasticity,

cos2 1 cos2 m cos2 n .

F2 a*
+ F2 ^ + T2"^2

~

This equation can be put under the form

cos2
1 + (

2+ c2
) cos2 m + (a

2+ 2
)
cos2 n] F2

, ,

-fW cos2 1 + a?c2 cos2 m + aW cos2 n =
;

^

and representing the two square roots by F' 2 and F"2
,
we have

F'2 + F"2 = (&
2 + c2

)
cos2

1 + (a
2 + c2

)
cos2 m ) , ,

+ (
2
4- &2

)
cos2 , )

^ '

F'2 F" 2 = W cos2 ? + a2^ cos2 m + ^2 cos2 n. (185)

Let 0', 0", be the angles that the direction of normal propagation
makes with the optic axes, and and 180 the angles that the

optic axes make with the axis x, the axis of greatest elasticity, then

we have

cos = A / sin = \ I (186)V Cr C2 V Cr C*

cos 0' = cos cos I 4- sin cos n, ) , .

cos 0" = cos cos ? 4- sin cos w; )

whence, we get

7 cos 0' cos 0" cos 0' cos 0"
cos I = - = s2 cos 2

cos 0' 4 cos 0" cos 0' 4- cos 0" /
2 c2 /1QQ ,

COS W r ; z^: A / -75 5* (loi/j
2 sm 2 V * ^

Substituting these values of cos I and cos ft in Eqs. (184) and

(185), and replacing cos2 m by 1 cos2 1 cos2 ft, we obtain
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F'" = * <? - fe
4

(cos 0' -f cos 0")
2

,

2

= a2 + (? + (a
2

(?) cos 0' cos 0",

>
(190)

F"F" 2 = aW - ~-
(cos 6?' - cos 0")

2

_= aW + ^

(cos
2 0' + cos2 0")

(191)

whence,

=
( F'

2 + F" 2
)
2 4 F' 2 F"2

= (a
2 + 612

)
2 + (a

2 c2
)
2 cos2 0' cos2 0"

(02
_ 63)2 (C0g

2
(9' + C0g2 <9"

(fl8
_

^2)2 (!
_ Cog2

0') (! _
Q< gi

. (192)

and finally, F' 2 F" 2 = (a
2 c2) sin 6' sin 0". (193)

This equation establishes the relation between the velocities of

the two plane waves which belong to the same direction of normal

propagation, and the angles that this direction makes with the

optic axes,

127. The directions of the two vibratory motions can be deter-

mined by means of the optic axes. These directions are parallel to

the axes of the elliptical section of (E) made by the plane normal

to the direction of propagation ;
but the elliptical section is cut by

the planes of the two circular sections of the ellipsoid in two equal
diameters of the ellipse, since they are equal to the radius b of the

circular section
; they are therefore equally inclined to the axes of

the ellipse. The optical axes being normal to the circular sections,

are projected on the plane of the ellipse in two diameters whio-h are
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perpendicular to those just spoken of, and are therefore also equally
inclined to the axes of the ellipse. But these projections are the

traces of the planes containing the directions of the normal propa-

gation and each optic axis. We therefore conclude, that the bi-

secting planes of the diedral angle formed by the planes

containing the direction of any normal propagation and
each of the optic axes, are tine planes of vibration of the two

plane waves corresponding to this normal propagation.
128. The plane xz being the plane of the optic axes, any direc-

tion of normal propagation in this plane will make the diedral

angle and 180, and hence the planes of vibration will be the

principal plane xz and a plane containing y and the direction of

propagation.

129. Relations between the Velocities of Two Kays
which are Coincident in Direction, and the Angles
that this Direction makes with the Axes of Exterior
Conical Refraction. The expressions

* - &
and

being the cosines of the angles that the optic axes make with the

axes of x, z, and making use of the analogy existing between the

ellipsoid (E) to the surface of elasticity, and the ellipsoid (W) to the

wave surface, we will have, by substituting for a*, tf, c2, in the111
above, 2 , ^, -^,

the expressions

V
and

for the cosines of the angles that the axes of exterior conical refrac-

tion make with the axes of x, z.

If then r and r', the two coincident radii-vectores of the wave

surface, represent the ray velocities propagated in the same direc-

tion, and u' and u" be the angles made by this direction with the

two axes of exterior conical refraction, a discussion in every way

analogous to that above for the optic axes will determine the re-

quired relation. This relation may be at once determined by

replacing V, V", &
, 6", in Eq. (193), by *,,

~
, u', u", respec-

tively ; we then have
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-To
--

773
=

("I)
--

9) Sm u '

r 2 r 2 \a2 c2/

130. The axes of exterior conical refraction being normal to the

circular sections of ellipsoid (W), by a similar course of reasoning
as in Art. (127), we will arrive at the theorem, that the bisecting

planes of the diedral angle, formed by the planes containing
any radius vector of the wave surface and each of the axes

of exterior conical refraction, are the planes of vibration of
the two rays corresponding to this radius vector.

131. Thus, from the wave surface we can determine:

1. The position of the refracted plane waves by its tangent

planes.

2. The direction of the two corresponding rays by the points
of contact of the two parallel tangent planes.

3. The velocities of the two rays by the lengths of the radii-

vectores drawn to the points of contact.

4. The velocities of the two plane waves by the normals from
the centre upon the tangent planes.

5. The interior directions of the molecular vibrations by the

projection of the radii-vectores on the tangent planes.
6. The plane of vibration by the plane of the normals and vi-

brations.

132. We have now shown that when any arbitrary displace-

ment is made in any homogeneous medium, a disturbance is

propagated in all directions from the origin, and that it is materially
affected and controlled by the elastic forces developed. In accept-

ing the conclusions which result, the limitations which have been

primarily established must be kept in mind, to avoid the danger of

accepting these results other than as exceptional and governed by
the admitted hypotheses and by the accuracy of the mathematical

processes employed. Observation and experiment are essential to

ascertain to what extent the corresponding physical phenomena
conform to these deductions. They are to be used, when at vari-

ance, to modify the hypotheses, and ultimately through this modi-

fication to approach nearer and nearer the true theories of the

physical science.

133. The fundamental hypotheses upon which the foregoing
discussion is in part based are as follows :

1. The admission of such a constitution of the medium that
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while it is variable around any molecule, it is similarly variable

around all the molecules. The propagation of the disturbance

without change of direction of the vibrations, when the latter are

excited along the singular directions depends on this assumption.
This inequality of elasticity is unquestionably exhibited in the phe-
nomena of crystallization.

2. That the excursions of the displaced molecules are so small

that the resultant elastic forces in any direction are proportional to

the displacement. This implies that the distances separating the

adjacent molecules are very great in comparison with their dis-

placements.
3. The principle of the coexistence and superposition of small

motions, by which any vibration can be replaced by others equiva-
lent, to it which are rectilineal.

4. The inefficacy of the longitudinal component of the elastic

force in light undulations, and the fact therefore of transversal

vibrations. (The grounds of this assumption are to be given sub-

sequently.)

5. The correlation of the total intensity of the elastic force to

certain velocities, and its identity with that expressed by the

equation

6. The principle of interference, by which the motion is en-

tirely destroyed everywhere, except upon certain surfaces, which

may be regarded as the loci of first arrival.

134. The agreement of the results obtained by experiment and

from observation with the deductions from the theory is almost

complete, while the crucial test of prediction in several noted in-

stances leaves but little doubt of the truth of the undulatory theory.

The utility of the determination of the wave surface and of its

thorough discussion is thus happily verified, by its almost complete

capability of satisfactorily explaining most, if not all, of the phe-

nomena of physical optics. While in the limited course prescribed

for the Academy we are unable to undertake the complete solution,

we have, in the short and elementary discussion here presented,

obtained sufficient data to prosecute the study of sound and light

to the extent necessary for our purposes, and in this study we will

have frequent occasion to refer to the foregoing analysis.



PART II.

ACOUSTICS.

135. The investigations of physical science show that all sensa-

tion has its origin in the state of relative motion of the molecules

of some medium with which the organ of sensation is in sensible

contact. Each sensation has its peculiar organ, which, with its

nerve system, receives and transmits molecular kinetic energy to

the brain, where it is transformed into sensation. The motions of

the molecules are, in general, vibrations, which are conveyed by
undulations from the source of disturbance in all directions through-
out the medium.

136. Acoustics is that branch of physical science which treats

of sound. The sensation of sound usually arises from the commu-
nication of a vibratory motion of the tympanic membrane of the

ear, due to the slight and rapid changes of the air pressure upon its

exterior surface, the vibratory motion of the air being caused by the

vibration of other bodies.

137. The ear consists essentially of two parts, one being in com-

munication with the external atmosphere, the other with the brain.

The first consists of an irregularly formed tube, beginning at

the orifice of the external ear and ending at the pharynx. Nearly

midway, the tympanic membrane, or drum-skin, of the ear crosses

this tube obliquely, separating the external portion, called the

meatus, from the part immediately within, called the tympanum.
That portion of the tube leading from the tympanum to the pha-

rynx, or cavity behind the tonsils, is called the Eustacliian tube.

The orifice of this tube at the tympanum is generally closed ; but

the act of swallowing opens it, whereupon the air on both sides of

the tympanic membrane becomes uniform in density. These three

portions of the first part of the ear generally, however, contain air

differing in density. In the meatus the air responds to all changes,
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however slight and rapid, taking place in the external atmosphere;
while the air in the tympanum and Eustachian tube is not so

affected, unless communication with the external atmosphere be

made as above described.

138. The other part, sometimes called the internal ear, is sur-

rounded by bone, except in two places, called the round and oval

windows. The cavity thus formed is called the bony labyrinth.

The windows are closed by membranes which separate the tympa-
num on the one side from the fluid contained in the labyrinth on

the other. Connecting the tympanic membrane with the oval win-

dow is a series of small bones, whose function appears to be to

transfer the vibrations from the former to the latter. The laby-

rinth is filled with liquid, having suspended in it many membrane-

ous bags, also filled with liquid. Upon the surface of these bags are

spread the terminal fibres of the auditory nerves, which, by special

arrangements, are enabled to take up the energy communicated to

the liquid in the labyrinth. The membrane of the round window

readily yields to the pressure of the liquid, moving out and in as

the oval window is moved in and out by the transfer of motion

through the bones of the ear.

Thus the energy communicated to the air in the external ear is

conveyed from the tympanic membrane, through the series of small

bones in the tympanum, to the membrane of the oval window,
thence to the liquid of the labyrinth, and finally to the auditory
nerves. How this energy is transformed into sensation is unknown.

139. To represent, graphically, the variations of air pressure,

we will make use of the curve of pressure, in which the abscissas

correspond to the times and the ordinates to the excess of the pres-

sure above its mean or average value. The pressure of the air, at

any point, is assumed to be measured by the pressure of air of the

same density and temperature upon a unit of area. Then take

to represent any curve of pressure as

o
b xy

Figure 20,

in which y = represents the standard or mean pressure, and
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y = p, a pressure above or below the standard pressure. When-
ever the pressures are strictly proportional to the corresponding
densities, as by the law of Mariotte, the same curve may also repre-
sent the curve of density. If we now assume that a curve similar

to the above represents the slight and rapid changes of pressure of

the air in contact with the tympanic membrane while the sensation

of a particular sound exists, we see that these changes do not in

general affect the average pressure of the air, for the areas above

and below the axis of the curve are equal. A curve is said to be

periodic when it consists of equal and like parts continuously re-

peated. The wave length of a periodic curve is the projection upon
the axis of the smallest repeated portion.

140. The ear clearly distinguishes between a musical sound and
a noise. The former is a uniform and sustained sensation, unac-

companied by any marked alteration, save that of intensity ; while

the latter is more or less varied and ununiform. When a sonorous

body is sounding, the most ordinary examination is sufficient to

show that it is in a state of vibration. The vibrations or oscilla-

tions of its parts set in corresponding motion the adjacent air-parti-

cles, which in turn transmit similar motions to the next following

particles, and so on. The air, then, is ever passing through alter-

nate states of condensation and rarefaction. When these vibrations

are regular, periodic, and sufficiently rapid, the resulting sound is

uniform in character and is called a musical tone. If the resulting
sound arises from vibrations which are non-periodic, it is called a

noise. Ordinary observation shows that few, if any, noises are per-

fectly unmusical
;
and few, if any, sounds are absolutely unmixed

with noise.

141. Propagation of a Disturbance in an In-
definite Cylinder. Let us suppose the indefinite cylinder MN
filled with air, and at the origin a piston

p, capable of rapid to-and-fro motion. In

the first place, let the piston be moved a

distance ds from p to p', in the time dt.

If the air were incompressible, it would be Figure 21,

moved bodily over the distance ds. But

being compressible, the air yields to the motion of the piston, and
at the end of the time dt the compression will have reached a posi-
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tion m, so that the stratum of air, being condensed from pm to p'm,

will exert an elastic force in excess of that due to its normal state.

Call this excess 6. The increased elasticity of p'm will cause it to

expand in the only direction possible, towards the next stratum

mn, which in turn becomes compressed. This second stratum

reacts in both directions ;
on the side towards mp' it brings the

molecules of mp' to rest, their acquired velocity having a tendency

to cause them to pass beyond their positions of equilibrium : and

on the side nr it compresses the next stratum, increasing its elas-

ticity ultimately by d. In this manner the compression is trans-

mitted from stratum to stratum, throughout the whole length of

the cylinder.

142. Let V be the velocity of propagation of the condensation,

v the velocity of the piston ; then we have

pp' = ds = vdt, pm = ds' = Vdt,

pm pp' = p'm = (V v) tit.

Supposing Mariotte's law applicable, and P to represent the

normal pressure, we have

P : P + 6 ::p'm: pm :: (Vv)dt : Vdt',

or d = p-JL_. (196)

Let p' now return to its primitive position p in the next succes-

sive dt. The first layer of the stratum will be dilated, occupying
the new space p'p, and its pressure P will become P 6. The

elastic force of the next layer P will become, by its expansion to

the left, P -, increasing that of the first also to P - But
A <>

the velocity acquired by the molecules of the second layer will

cause them to pass beyond their positions of equilibrium, so that its

elastic force will diminish until it becomes P <5, at the instant

the elastic force of the first layer, continually increasing, becomes

P, its normal value. The third layer will, in turn, act on the sec-

ond as the second has acted on the first, so that the dilatation cor-

responding to d will travel the distance pm in the time dt, during
which the piston is retracing its path p'p. The magnitude of <*

will evidently depend on the value pp' and the time dt. If dt be

constant and 6 be varied, the condensations will vary with d. The
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analysis shows that the compressions and dilatations are propagated
with equal velocities, and that these velocities are independent of

tha degree of condensation or of rarefaction, when the medium is

the same and the amplitude is very small.

143. Let the prong of a tuning-fork p. . . .p' (Fig. 22) be dis-

placed a very small but finite distance from its neutral position a.

By its elasticity it will vibrate with equal displacements on each

side of its position of equilibrium. Its velocity increases from zero at

p to a maximum at a, and decreases in an exactly reverse manner
to zero from a to p'. Let the duration of its motion from p to p'
be divided into equal parts, each represented by dt, the epoch cor-

responding to the position p. From p the prong describes unequal
but increasing distances during the successive dt's to the position a,

and unequal but decreasing distances from a to p'. Each corre-

sponding compression can be found from Eq. (196) by the substi-

tution of the proper value of v, and these compressions or conden-

sations will be propagated with a constant velocity V. While the

prong is returning from p' top, the rarefactions will increase from

p' to a, and decrease from a to p, and their values may be deter-

mined from the same equation. The condensations will be sym-
metrically distributed with reference to the maximum condensation,

neglecting the very small amplitude vp'. Likewise the rarefactions

will be symmetrically distributed with respect to the maximum
rarefaction.

Figure 22.

144. The positive ordinates of the curve p'rs represent the suc-

cessive condensations, 8 being the position of the layer reached by
the first condensation when the prong has arrived at p' ;

and the

negative ordinates pr's will represent the successive rarefactions

when the first condensation has reached the position u, and the

prong has returned to its primitive position p. The ordinates of

the other curves represent either condensations or rarefactions, as

indicated in the figure corresponding to the particular state and

position of the prong.
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145. In the figure, pu, the length of the wave is the distance

traveled by the disturbance while the prong is making a complete

vibration, and hence we have, n being the vibrational number and

T the periodic time,

A = - = Vr. (197)n

146. The mean velocity of the air molecules is evidently the

same as that of the vibrating prong, and therefore this will vary
with the vibrating body. In the example given, the mean velocity

of the molecules is 2 mm. x 256 = 0.512 m. The actual velocity

of the air molecules continually varies, and at any time is propor-
tional to the ordinates of the curve a quarter of a wave length in

advance of the molecules considered. When the vibrating body has

simple harmonic motion, the molecular velocity is given by

v = aco82n (198)

147. The value of
,
the amplitude of the vibration, diminishes

(Art. 72) according to the law of the inverse distance from the cen-

tre of disturbance ; and for each value of a taken as constant within

the wave length we have, by the above equation, sensibly exact

values for the molecular velocity at any time.

148. When the vibrations of the body are sufficiently frequent

during the unit of time, and of sufficient amplitude, the sensation

of sound arises in the ear, which, however, we unconsciously refer

to the vibrating body. A sonorous wave comprises the series of

condensations and rarefactions arising from one complete vibration

of the sounding body.
149. The sum of all the condensations in the condensed portion

of the wave is represented by the area of the curve p'rs, and if it be

divided by the duration of half the vibration, the mean condensa-

tion will result. Thus, take the amplitude of the oscillation of the

tuning-fork, making 128 vibrations per second to be 1 mm., and the

velocity of propagation to be 340 m.
; then, from Eq. (196), we

will have
1

. P * _. p~

340000 1-
'

^340000-256- 1327'

(199)
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Heuce, the change of density in the air, measured by the

barometric height due to the mean condensation, is not greater than

that due to 0.0226 inches of mercury, when a sound corresponding
to 128 vibrations per second, and caused by the fork under the sup-

posed conditions, is passing.

150. From the preceding discussion we see that we can neglect,

in general, the absolute displacements of the air molecules, and

consider the change in pressure and density as being alone propa-

gated. Therefore, a file of elastic balls transmitting motion prac-

tically illustrates the state or condition of a series of air molecules

during the propagation of a sonorous wave. An excellent illustra-

tion is also given by means of a chain cord. If it be attached at

one of its extremities to a fixed point, and be held stretched at the

other, the successive rings or spirals will assume positions of stable

equilibrium with respect to each other, determined by the tension.

These rings, for the purpose of illustration, may be taken to repre-

sent the contiguous air strata or particles in an indefinite tube, or

upon any line along which sound is supposed to be propagated. If

any ring be plucked, it will, when released, ^oscillate about its place
of rest while the disturbance is being propagated in both directions

to the points of support. Upon reaching these points the dis-

turbance will be divided, a part proceeding in the new medium,
and the remainder, being reflected, will retrace its path, to be again
subdivided at the other end. This will continue until the whole

energy of the original disturbance has been dissipated. By increas-

ing the tension the disturbance will be more quickly propagated,
and conversely. Now suppose, from the point of plucking, lines

be drawn in all directions, and the same phenomena occur on these,,

then the behavior of each ring and the progressive motion of the

disturbance illustrates what takes place in air during the passage
of a sound wave along every right line drawn from the origin of the

sounding body. In an isotropic and homogeneous medium, the

disturbance moves with constant velocity, and the volume whose

surface bounds the disturbed particles at any instant is a sphere
whose radius is Vt.

151. The general properties of any sound are intensity, pitch,

and quality.

Intensity is that property by which we distinguish the relative

loudness of two tones of the same pitch and quality. We can also,
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in general, determine which of two tones of different pitch and

quality has the greater intensity. The air particles have but small

displacements from their positions of relative rest, when the dis-

placement is caused by the passage of a sound wave. The forces

which urge them back to their positions of rest are assumed to vary

directly with the degree of displacement. In Analytical Mechanics,

it is shown that the periodic time of the air particle depends only

upon its mass and the intensity of the force of restitution; and

therefore, in the same medium, with given pressure, density, and

temperature, for the same exciting cause, the periodic time will be

constant, but the mean velocity of the air particle will vary with

the size of the orbit. The kinetic energy in the moving particle,

varying as the square of the velocity, will therefore, for the same

exciting cause and the same medium, under the same circumstances

of pressure, density, and temperature, vary directly as the square of

the maximum displacement. By the law of the decay of energy,

the intensity of the sound will therefore vary inversely as the square

of the distance from the origin of the exciting cause. (Art. 72.)

152. Pitch is that property by which we distinguish the posi-

tion of two tones in the musical scale, and thereby recognize which

is the more acute and which the more grave. The pitch depends

upon the frequency of the vibration
;
the greater the number of

vibrations produced by a sounding body in a given time, the more

acute will be the resulting sound. The siren is an instrument used

to illustrate this fact. It consists essentially of a disk pierced with

a number of equidistant holes, through which air is forced when it

is put in rapid rotation. As the rotation increases, the sound grad-

ually rises in pitch, and as it diminishes the pitch falls correspond-

ingly. If a coin with a milled edge, or a cogged wheel, be put in

rotation, and a card be held against it, the same changes in pitch

will be observed. In these cases the single puff, or stroke of the

card against the coin, or wheel, is essentially a noise, and when

these strokes are multiplied sufficiently in a given time, the result-

ing effect is a note of definite pitch. So that a clearer distinction

than that heretofore given should be made between a noise and a

musical tone. To this distinction we will again refer.

153. The quality of a musical tone is that property by which

we can distinguish whether two sounds of the same pitch, of either

equal or unequal intensities, arise from the same or different sono-
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rous bodies. This property enables us, within certain limits, to

distinguish voices and the various sounds peculiar to different musi-

cal instruments. We have as yet only exacted that a musical sound

shall be periodic and regular ;
that is, that during any vibration the

successive states of motion of the particle shall recur in the same

order as in each of the previous vibrations. But it is evident that

we may have an infinite variety of periodic motion, and it will be

shown that the quality of the sound will varj with each variation

of the periodic motion, the wave length remaining constant.

154. Every one has experienced the fact that more than one

sound can be heard at once. Our attention can be, for the mo-

ment, fixed upon any one of the many sounds that are constantly

occurring, and at the same time we may be conscious of the exist-

ence of the others. Therefore, the meeting of sound waves in the

external ear does not, in general, result in mutual destruction, or

in essential modification; while, at the same time, we must ac-

knowledge that the air in contact with the tympanic membrane, at

any given instant, can possess but one determinate pressure and

density. The changes in pressure and density due to many exciting
causes must, then, result from the superposition and coexistence of

those arising from each separate cause, and, in general, without

destruction or modification. We have here the application of the

principle enunciated in Art. 204, Mechanics.

The more general statement of the law of the composition of

displacements would be that demonstrated in the principle of the

parallelogram of forces, but when the displacements are infinitely

small, we can take, rigorously, the resultant displacement to be the

algebraic sum of the component displacements. The diameter of

the meatus at the tympanic membrane does not exceed 0.25 inch,

and 'therefore, for sounds whose sources are at ordinary distances,

the wave fronts at the position of the tympanic membrane coincide

sensibly with their tangent planes, and the changes of density and

pressure may be compounded by the law of small motions, without

appreciable error.

155. Let the broken line, in the following diagram, represent
the changes of pressure upon the tympanic membrane while a con-

tinuous noise, in which the ear recognizes no definite pitch, is

sounding for a small part of a second, and let the dotted line repre-

sent another noise of the same duration.

7
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Figure 23,

Then, if both noises sound together, the resultant variation of

pressure will be represented by the full line obtained by joining the

extremities of the ordinates found by taking the algebraic sum of

the ordinates of the separate curves.

These two noises do not, in general, unite into one, but are

heard distinctly and simultaneously, except in the case where the

two sounds are nearly alike, and the two curves nearly similar.

Again, there is nothing in the resultant curve to suggest to the eye

the nature of the two component curves. Hence, the ear possesses

the property of separation ;
while the eye, according to this method

of combination and representation, does not.

156. Let the component curves be periodic, two periods of O'X'

being equal to three of 0"X".

o\

Figure 24,

The resultant curve OX will be a periodic curve, whose repeated

portions are represented above. An examination of this curve by
the eye gives no clue to its components, and we may resolve it into

an indefinite number of pairs of components, but one of which

would represent the two notes which sounding together will give us

the resulting effect upon the ear. But if the ear resolves the com-

posite note represented by OX, it must resolve, in like manner,

O'X' and 0"X". Observation confirms this deduction.

157. The only note the ear is incapable of resolving is that of

the simple musical tone, and this incapability arises from the fact

that such a tone is in reality perfectly simple, and not compound.
The tones which are ordinarily called simple, are, in reality, com-

pounded of a series of simple tones theoretically unlimited in num-

ber. Very few of them have sufficient intensity to be heard ; but
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these few form a combined note which is always the same under
the same circumstances, and we habitually associate them together,
and perceive them as a single note of a special character. But it is

possible, with certain appliances, to partially analyze the composite
note by an attentive study of the separate constituents.

Whenever two sounding bodies give notes whose tones form con-

sonant combinations with each other, the difficulty of analysis is

increased; when the combinations are dissonant, the analysis is less

difficult.

158. A noise may therefore be defined to be a combination of

musical tones, too near in pitch to be separately distinguished by
the unassisted ear, or to be a combination of noises, each of which

is made up of sounds so near each other in pitch as to be undistin-

guishable ;
the separate noises may be near or far apart in pitch.

It is so complex, that its analysis is beyond the power of the un-

assisted ear. A simple musical tone, on the contrary, is incapable
of resolution by reason of its absolute simplicity. Hence, strictly

speaking, only simple tones have pitch. A simple musical tone

will have a single determinate pitch. The pitch of a musical note

must then be taken to mean the pitch of the gravest simple tone in

its combination. If the higher simple tones be successively stopped

out, the pitch, as defined, will remain unaltered, but the quality of

the note will undergo variations until the single musical simple
tone corresponding to the gravest tone is reached, beyond which no

further modification can take place.

159. We will hereafter assume, as the fundamental simple tone,

that component of any note which corresponds to the regular pe-

riodic curve of the given pitch. This distinction is important ;
for

it is evident that there may be many periodic curves of the same

pitch, and each may correspond to musical notes differing in quality.

Figure 25.
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The preceding curves (Fig. 25) represent notes of the same pitch,

but of different quality. Helmholtz has shown that while every

different quality of tone requires a different form of vibration, the

converse is not necessarily true; i. e., that different forms of vibra-

tion may not correspond to the same quality.

160. We have seen, page 45, that any physical condition, such

as density, pressure, velocity, etc., which is measurable in magnitude
or intensity, and which varies periodically with the time, may, by

Eq. (195), be expressed as a function of the time. Hence, every

periodic disturbance of the air, and particularly such disturbances

as excite the sensation of a musical tone, can be resolved into its

harmonic vibrations.

A single simple tone being represented by the simple harmonic

curve

y'
= a' sin (~ + '), (200)

\ A I

and another of half wave length by

9.-JT/JT \

(201)y" = a"sml~ + a"\

\ 2 /

the resultant curve will be represented by

? + a'\ + a" sin
(-

+
"),

(202)y = a sn ~

which has the same wave length, but a different amplitude and

phase. This change in the amplitude and phase may be varied at

pleasure, by conceiving the second curve to be shifted along the

axis any distance from zero to A, and again to pass through all

values of the amplitude between any two limits. The resultant

curve, in all cases, will, however, be a periodic curve of constant

wave length.

161. Considering the simple musical tones which they represent
then to be sounded together, with the same modifications, it has

been found that the ear can distinguish the components when the

attention is cultivated and directed to this effect. With a variation

in phase only, the effect on the ear is constant and invariable, and

hence we see that many different resultant curves may represent
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Phase diff'era 90 at O

Figure 26.

essentially the same sensation. Thus, the two curves above, repre-

sent the same compound tone made up of the two simple tones,

although the forms of the curves are quite different. The resultant

tones are the same, both in quality and in pitch, but differ in inten-

sity. By combining in the same way other simple tones of one-

third, one-fourth the wave length, and so on, the quality will be

changed, without affecting the pitch, as can be seen from the

graphical construction, and heard by audible experience. In all

these cases the untrained ear, by the aid of certain appliances, can

always analyze the resultant sound into its component simple tones,

and when trained, often without this assistance. When but one

simple vibration of sufficient frequency and intensity to produce
sensation alone exists, no such analysis takes place.

162. The investigations of Helmholtz have shown that the ear

possesses the property of analysis of a single musical tone into its

simple musical tones, each of which is distinctive in character, but

which blend harmoniously into the single tone when sounded to-

gether. The wave lengths of these components are aliquot parts of

the wave length of the fundamental, and the simple tones are called

the upper partials of the fundamental or prime tone. Hence, from

Art. 64 and these facts, we conclude that, when several sounding
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bodies simultaneously excite different sounds, the variations of air

density and the resultant displacements and velocities of the air

particles in contact with the tympanic membrane are each equal to

the algebraic sum of the corresponding changes of density, the dis-

placements and the velocities which each system of waves would

have separately produced, had it acted alone.

163. This analysis by the ear clearly shows, then, that the sep-

arate effects of the simple vibrations are, in general, neither modi-

fied nor destroyed, but actually exist, and it remains to be proved
that such is really the case, independent of the peculiar sensation

which is the result of their action upon the ear. Since Fourier's

Theorem mathematically demonstrates that any form of vibration,

no matter how varied its shape, can be expressed as the sum of a

series of simple vibrations, its analysis into these simple vibrations

is independent of the capacity of the eye to perceive by examining
its representative curve whether it contains the simple harmonic

curves or not, and if it does, what they are. All that the curve

indicates is that the more regular its form, the greater the effect of

its deeper or graver tones in. comparison with its upper partials.

Before proceeding to show that these component vibrations actually

exist together, and that each can affect the ear or other sensitive

vibrating body, let us now establish clearly the definitions pertain-

ing to the subject.

164. A simple or pendular vibration is that which corresponds

to the complete oscillation of a simple pendulum, and is graphically

represented by the simple harmonic curve.

A simple musical tone is that effect produced upon the ear when

a sonorous body is executing simple vibrations only, of sufficient

frequency and amplitude to be heard. According to this definition,

simple tones do not in reality exist
;
but in the vibrations of such

bodies as tuning-forks, the component vibrations which simulta-

neously exist with that of the gravest period, are generally non-

periodic with it, and so deficient in intensity that their influence is

negligible, and we may regard such bodies as producing simple

vibrations alone without sensible error.

165. A single musical tone may be either simple or compound.
When compound, it is made up of its fundamental simple tone,

together with its upper partial simple tones, each of which has a

frequency of either twice, three times, or so on, that of its funda-
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mental. It is due to the vibration of a single sonorous body which,

during its motion, vibrates as a whole, and divides also into parts

which vibrate twice, three times, and so on, as rapidly as the whole.

One or more of these upper partials may be wanting during the

vibration
;
when this occurs, the quality of the single musical tone

is correspondingly affected.

A composite musical tone is composed of two or more single

musical tones.

166. Musical Intervals. The extreme range of the hu-

man ear lies between 20 and 40000 simple vibrations per second.

The corresponding wave lengths are obtained by dividing the veloc-

ity of sound by these numbers, and are approximately 54.6 feet and

0.0273 feet respectively, assuming the velocity of sound to be 1092

feet at C. The ordinary sounds heard by the ear have a much
less range ; their vibrational numbers lie between 40 and 4000, cor-

responding to wave lengths of about 27.3 feet and 0.273 feet,

respectively. When a stretched wire is put into vibration, and the

tension continuously undergoes variation, the pitch of the sound

passes by continuity from lower to higher, or the reverse, and we
therefore experience the sensation of a musical interval between any
two limiting tones. We may, then, define a musical interval by the

ratio of the vibrational numbers of the two limiting tones. Thus,
if the two tones correspond to the vibrational numbers 256 and

384, the name of the interval is the fifth, and it is expressed by the
o

fraction -
Considering the simpler ratios that lie between two

a

tones whose vibrational numbers are as 1:2, we obtain the follow-

ing musical intervals :

Consonant.

Unison,
Minor third,

Major third,

Fourth, . .

Fifth, . .

Major sixth,

Octave, . .

Dissonant.

Major -second, . . . 9:8 ' -

Minor second, . . . 10 : 9
- = ^

One-half major tone, 16 : 15 =
^-f

One-half minor tone, 25 : 24 = f

Comma, 81 : 80 =

The first are called consonants, because the effect is pleasing to
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the ear when the tones of either of these intervals are sounded to-

gether. All other intervals within range of the octave are called

dissonants.

167, The measure of the musical interval represented by the

ratio - is the log
- This arises from the fact that if we consider

q
5

q

any three tones whose vibrational numbers are p, q, and r, the

musical interval between p and r must be equal to the sum of the

two intervals between p and q, and q and r. If the ratios of the

vibrational numbers were taken to measure the intervals, we would

have, for the same interval, the expressions

r , q ,

r
and -

H
p p q

which are not equal to each other. But since

*- = q~ x
T
-, (203)

P P V

we have log
*- = log

J
+ log

T
-, (204)

and we may therefore take the logarithm of the ratio of the vibra-

tional numbers as the measure of the musical interval. The name
of any interval, then, is the ratio of the vibrational numbers, and
its measure is the logarithm of that ratio. The logarithms are

usually taken in the common system.

168. Musical Scales. A series of tones at finite intervals

is called a musical scale. If the vibrational numbers are in the

proportion of the natural numbers, the musical scale is called the

harmonic scale. When two tones whose interval is that of an octave

are sounded together, we are conscious of a certain sameness of sen-

sation, which is absent in all other intervals except multiples of the

octave. We may then assume this interval as a natural unit, since

it gives a periodic character to the scale. Whatever properties are

found with regard to the tones in any octave, occur in the other

octaves of a higher or lower pitch. The vibrational numbers of the

tones of the harmonic scale, starting with a fundamental tone whose

vibrational number is 128, will be as follows:

128 : 256 : 384 : 512 : 640 : 768 : 896 : 1024 : 1152 : 1280 : etc.
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169. Examining these numbers, we see that each interval in

any octave is divided, in the succeeding octave, into two intervals

which can be obtained from the equation

7M;JL _ 2n + 1 2^ + 2

n 2n
* 2^M'

n being the natural number which marks the position of the first

tone of the lower interval in the harmonic scale. Thus we see that

the interval 128 : 256, or the octave, is divided in the next octave

. ,
, 2n + 1 3 384 , 2n + 2

into two intervals represented by = - = - - and -
2n 2 256 2n + I

= - = -- . The first interval, 256 : 384, in the second octave is

9 O- 1

divided into the two intervals corresponding to - - = - and
9 9 K

- = = in the third octave ; the second interval, 384 : 512, in
An -f- 1 o

the same octave, is in like manner divided into - ^ = - and
2n , o 8

2ra 6

- = ^ in the third. The first interval, 512 : 640, in the third
+

. 9 10
octave, is subdivided in the fourth octave into ^ and , and so

o y

on. Arranging all the intervals, with their corresponding subdi-

visions in the next higher octave, we have

2
1st octave, 128 : 256, interval -, subdivided in 2d octave into

256 : 364 = | and 384 : 512 =
;

/c o

o

2d octave, 256 : 384, interval -, subdivided in 3d octave into
/c

512 : 640 =
|

and 640 : 768 =
| ;

4.

2d octave, 384 : 512, interval ^, subdivided in 3d octave into
o

768 : 896 = and 896 : 1024 = ;
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3d octave, 512 : 640, interval j, subdivided in 4th octave into

n 10
1024 : 1152 = 5 and 1152 : 1280 = ^ ;

n

3d octave, 640 : 768, interval -, subdivided in 4th octave into

11 12
1280 : 1408 = ^ and 1408 : 1536 =

Thus every interval in the harmonic scale is divisible into two

other intervals, whose ratios are those of consecutive numbers in the

next higher octave.

170. Perfect Accords. A perfect accord is a series of three

tones, called a chord, which, sounded simultaneously, give a partic-

ularly pleasing sensation to the ear. The perfect major accord

consists of the three tones called the tonic, the middle, and the dom-
K q

mant, whose intervals are a major third and a fifth, or - and -

n

The perfect minor accord is composed of a minor third,
-

, and

a fifth, |.A

171. The Diatonic Scale. The tones of this scale are

usually designated by letters or symbols, as follows :

C:D:E:F:G:A:B::d: etc.

ut or do : re : mi : fa : sol : la : si : do : re : etc.

Forming the perfect major accord on C as a tonic, we will have

C : E : G,

4 2

Forming similar chords with C and G, by making a dominant

and G a tonic, we will have
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F! : A, : C, G : B : d,

25 3 15 936 2 ~S 4*

Arranging these three chords in order of their pitch, we find

Fj : A! : C : E : G : B : d,

25 5 3 15 936 4 2 T V

which is a musical scale of seven notes, rising one above another by
alternate major and minor thirds.

Replacing in this scale F
x ,
A

t , by their higher octaves, and d

by its lower octave, which is permissible, and arranging in order,

we have

C:D:E:F:O:A: B : c,954351584323 8

w^hidi is known as the diatonic scale. The names of the intervals

heretofore used are now seen to come from the position of the notes

g
in this scale with reference to the tonic ; thus, the interval ^ is a

o

major second, the interval - a major third, ^
a fourth,

- a fifth,

and so on. The first tone in the scale is called the tonic, the fifth

the dominant, and the fourth the subdominant. Taking the vibra-

tional number of the tonic C to be 24, we have the corresponding
vibrational numbers of the diatonic scale,

C : D : E : F : G : A : B : c,

24 : 27 : 30 : 32 : 36 : 40 : 45 : 48.

172. The vibrational numbers of the other octaves are obtained

from these by constantly doubling or halving them, according as

we ascend or descend, the letters being properly accented to indi-

cate in which octave the series is taken. Theoretically, the tones

of the diatonic scale above belong to the harmonic scale, whose fun-

damental tone has one vibration per second. This fundamental
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32 /2\ 5

tone is five octaves below the subdominant
;
for = ( ) We

will hereafter take the octave whose tonic corresponds to 256 vibra-

tions for that of comparison, because Scheibler's tonometer, which
we use in illustration in the lectures on this subject, is based on

that tonic.

173. The relation of the successive tones of the harmonic scale

to any tone assumed as a fundamental is as follows
; taking as the

prime that whose vibrational number is 256, we have

Prime or fundamental, 256 vibrations, or c ;

1 Harmonic, 512 " "
c

r

, octave;

2 " 768 " "
g', fifth in 1st octave

;

3 " 1024 " "
c", second octave

;

4 " 1280 " "
e", maj. third in 2d oct.;

5 " 1536 " "
g", fifth of 2d octave;

6 " 1792 " " a"+ , lying between 6th

and 7th of 2d oct.
;

7
" 2048 " "

c'", third octave;

and so on. These harmonics are called overtones or upper partials,

and, as seen above, bear a close relationship to the prime. When
the prime is sounded and the upper partials exist at the same time,

the resulting tone will have a determinate quality. And if the par-

tials be successively stopped out, the quality will undergo a change,

until we reach the simple tone due to the prime alone. The suc-

cessive curves which represent these tones graphically will approx-

imate gradually to that of the harmonic curve of the wave length

of the prime, which it ultimately reaches when all of the partials

are wanting. The wave lengths of the above curves are each equal

to that of the prime.

174. It can be experimentally shown that a stretched cord,

when plucked from its position of rest, will give a compound tone,

which is made up of its fundamental united to some of its overtones.

The educated ear can readily distinguish the existence of these

simple tones, which, sounding together, determine the quality of

the compound tone. But to demonstrate to the untrained ear the

existence of these partial tones, it is necessary to make use of cer-

tain appliances called resonators, whose action depends on the
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principle of sympathetic resonance. These consist of metal or other

hollow bodies, generally spherical in form, closed except at two

places; one of the openings is to permit the mass of air within to

be affected by the vibration of the air without, and the other to per-

mit the air within to be brought into near contact with that in the

aperture of the ear.

175. Sympathetic Resonance. If a body capable of

taking up an oscillatory motion of definite period be subjected to a

series of periodic impulses, whose period is the same as that of the

body considered, the aggregate effect will in time become sensible,

however weak the impulses may be. But if the period of the im-

pulses be even slightly different from that of the body, the resultant

effect will, in general, never become appreciable; for, while the

kinetic energy is increased by the elementary quantities of work due

to the impulses applied, soon the succeeding impulses will be deliv-

ered in a direction contrary to the motion of the body, and the

kinetic energy will be correspondingly diminished. The maximum

energy can then never exceed a small definite quantity, and in

reaching this state the body will pass through alternations of rest

and motion. To determine the effect of any periodic impulse upon
a body capable of being put into vibration, we have the following

rule, due to Helmholtz: Resolve the periodic motion of the impulse
into its component simple pendular vibrations ; if the periodic time

of any one of these vibrations is equal to the periodic time of the

body acted upon, sensible vibration will result, and not otherwise.

176. Now consider the mass of air within the tube AB, while a

simple vibratory motion, due to a sim-

ple tone, occurs in the external air.
~

\ /

Let V be the velocity of wave propaga-
tion in the air under consideration, and

n the vibrational number of the body.

Then, during the first semi-vibration,
Figure 27.

the molecules at B describe half their

orbits while undergoing condensation, which is transmitted through
the intervening molecules to A and back to B, provided
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During the second semi-vibration, the rarefaction at B will be trans-

mitted in the same manner, and the orbits at B will be completed.
V

Should BA be either > or < , the second impulse would reach
MI

B after or before its molecular orbits had been completed. Under
these circumstances, succeeding impulses would in a short time

reduce the displacements of the molecules to zero, and never permit
them to attain an appreciable value, and therefore the vibration of

the air column would not give a sound of appreciable intensity.

But if, on the contrary, the impulses were of the same periodicity

as the air molecules, each successive impulse would add to the first

displacement, and this addition would continue until the work of

the resistances developed was exactly equal to the increment of

energy caused by each impulse. The displacements of the mole-

cules would then have attained their maximum value, and the

resulting sound a fixed intensity.

177. Each confined mass of air has a particular periodicity, and

each of the resonators of Helmholtz is carefully contrived to respond
to a given periodicity of vibratory motion. If, then, by the rule

above given, any composite sound exist, and one of these resonators

be applied to the ear, the resonant effect will indicate whether the

simple tone corresponding to the resonator is present or absent in

the composite sound. This and analogous experiments show that

sympathetic vibration is not due to any property peculiar to the ear,

but that it is a mechanical effect separate and distinct from the

sense of audition.

178. The energy of motion depending upon the mass and ve-

locity, we see clearly that of two sounding bodies, vibrating with

the same amplitude, the smaller mass will more quickly give up its

energy to the surrounding air and sooner cease sounding. Tuning-
forks being generally made of steel, will, when put into rather

strong vibration, continue sounding for a reasonable length of time.

When mounted upon their resonant boxes, the latter containing a

mass of air capable of vibrating in unison with it, they affect larger

masses of air than when not so mounted, and come more quickly to

rest; but the sound will have greater intensity, and can the more

readily be used to study the phenomena of sympathetic resonance.

If such a tuning-fork be in the vicinity of a vibrating sounding

body whose sound contains the tone of the fork, the latter will in
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time indicate the fact by coming into sympathetic vibration. The

analysis, then, of any composite note can be practically made by
means of a sufficient number of such forks, whose vibrationul num-
bers embrace all the simple notes of the composite sound. Con-

versely, the synthesis of a composite note can be effected by setting
in vibration all the forks, with proper amplitudes, which the analy-
sis indicates belong to the note in question.

179. When plates, bells, strings, etc., are put into vibration,

they may either vibrate as a whole, or separate into parts which

vibrate two, three, four, or more times as rapidly ;
or both of these

conditions may occur simultaneously. Each of the simple periodic
vibrations has an actual existence, and corresponds to a single
musical tone of definite pitch, which may be recognized as above

described.

180. In listening for any simple tone in the composite note, it

is important to clearly fix the attention upon the special tone whose

existence is to be determined, and for this purpose the tone should

be sounded alone before listening for it in the composite note.

When sufficiently practiced in this manner, the ear can readily

acquire the faculty of detecting them without the use of resonators.

181. By means of the monochord, which consists essentially of

a string stretched over two bridges on a sounding-box, we can verify

the simultaneous existence of the prime and upper partials, and

estimate the influence of the latter in affecting the quality of the

sound. The theory of vibrating strings shows that the frequency
of vibration of the same string under the same tension is inversely

proportional to its length. Plucking the string at its centre, the

resulting tone will be that of its prime, modified by some of the

upper partials, those of the latter being absent that require the

middle point as a point of rest. By a movable bridge, the string

can be divided into its aliquot parts, which being set in vibration,

will give the upper partials in succession. Becoming thus acquaint-

ed with these simple tones, we can verify their presence or absence

in each special case. For example, if the string be plucked at one-

fourth its length, theory requires the presence of the first upper

partial with the prime, and the fact will be made manifest by damp-

ing the string at the middle point immediately after plucking, when

the octave will sing out, no longer encompassed by the prime.
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182. These and the facts of sympathetic resonance show that

the analysis of all resonant motion into simple pendular vibrations

is real and actual, and that any other analysis is highly improbable.

The analogous property of the ear is expressed by the law of G. S.

Ohm, viz., that the human ear perceives pendular vibrations

^alone- as simple tones, and resolves all other periodic motions

of the air into a series of pendular vibrations, hearing the

simple tones which correspond to these simple vibrations.

We may therefore conclude, that in all cases whenever any motion

of the air caused by a sounding body contains a simple vibration of

.the same periodicity as that of any other body, the latter will in

time take np a vibratory motion which, if of sufficient intensity,

will affect the ear with a simple musical tone of a definite pitch ;

.and the mechanical effect of vibration will ensue, whether it be of

sufficient amplitude to produce a sonorous effect or not.

183. Velocity of Sound in any Isotropic Medium.
The air is the medium of transfer to the ear of the vibratory mo-
tion of a sounding body. Under a given temperature and density,

its elastic force is constant in all directions, and it is therefore an

isotropic medium. Being compressible, the motions of its mole-

cules, during the passage of a sound wave, are to and fro along the

line of wave propagation. They are then longitudinal vibrations,

and Eq. (116), for the velocity of wave propagation, for waves with

.such vibrations in an isotropic medium, is

sin2

184, The wave lengths of sound in air can never be greater
than 54.6 ft., nor less than 0.027 ft.

;
for the usual sounds the limits

are 27.3 ft. and 0.273 ft., at 0. In the above equation, Az is the

distance separating two adjacent molecules, and without knowing
its absolute value for any degree of pressure, we may say that A,

even in the minimum sound wave, is very great with respect to A#.

Therefore the arc is approximately zero, and may be substituted for

sin-- - without appreciable error. We then have
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(207)

=
!*[*

Hence, with the supposition of small displacements, etc., the

velocity of wave propagation of sound in air is theoretically inde-

pendent of the wave length, and all sounds, whether grave or acute,

will travel, in air of constant pressure and temperature, with equal
velocities.

Omitting the term containing A.T4 as being small compared with

that of which Az2 is a factor, and replacing (r) by its equal

^ ^
, we have -i f i \

r F2 = i
I,p

12 AZ*. (208)
/v /*

185. Let E represent the modulus of longitudinal elasticity of

air, P the barometric pressure, / the length of the air column with-

out pressure, and A the compression due to P. Then, by Eq. (I),

we have

E={P. (209)

Since, if the pressure P be removed, the expansion would be

indefinitely great, the compression A is sensibly equal to I, and
therefore

E = P
; (210)

that is, the elastic force of the air is that due to the barometric

pressure on the unit area.

186. In Eq. (208),
i ^f(r) is the acceleration due to the
a

aggregate elastic forces developed in the molecules \i by the arbi-

trary displacement of the molecule m, and reciprocally is the elastic

acceleration of m
; hence we have, by multiplying by m, the inten-

sity of the elastic force acting on m,

8
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Aic
- is the cosine of the angle made by this force with the axis of x,

which, since the medium is isotropic, is equal to unity; multiply-

ing the elastic intensity on m by the factor
^,

we have the elastic

intensity on the unit area, or

whence, Zp/(r) = -
(212)

Substituting in Eq. (208), we have

V = ***; (213)m

Arz8 is the volume of the molecule, and replacing it by its equal

yr,
and extracting the square root, we will have, finally, for the

velocity of wave propagation in air or any gas, subjected to the law

of Mariotte,

4

or directly proportional to the square root of the ratio of the elas-

ticity of the medium to its density.

187, This conclusion is deduced on the hypothesis of the direct

ratio of the elastic force to the density, and if the law of Mariotte

were true for all circumstances of pressure, temperature, and den-

sity, this theoretical velocity and the actual velocity determined by

experiment would perfectly accord. But this relation is true only
for a perfect gas and for constant temperature.

188. The relation of these two parameters of air, considered as

a perfect gas, are given by the following formulae :

p'd=pd',

p'd = pd' (I + 0),

<217>

in which p and p' are respectively the old and the new pressures or
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the corresponding elastic forces, d and d' the old and the new den-

sities; the coefficient of expansion, a constant, and equal to ^-y
for Centigrade scale

;
and 0, degrees of temperature Centigrade.

The first of these equations is the mathematical expression of

Mariotte's law
;
the second, of that of Charles or Gay-Lussac ; and

the third, of that of Poisson. The gas to which these equations are

applicable is supposed to be a perfect fluid, devoid of friction, and

to have the pressure at each point uniform in all directions.

The temperature is supposed constant during all changes of

pressure and density in Mariotte's formula, while in that of Charles

the gas takes the pressure and density determined by the change of

temperature. The formula of Poisson supposes the gas subjected

to sudden changes of density, and that the heat developed, whether

considered positively or negatively, is not conveyed by radiation or

conduction to other bodies, or, in other words, that the quantity of

heat in the gas is constant. Remembering that sudden condensa-

tion in air or gas produces heat, and sudden rarefaction cold, and

assuming that these alternations are so rapid that neither the heat

nor the cold is conveyed to the other particles, within the volume

considered, much beyond the point at which they originate, we see

that this heat and cold will produce an elastic force of greater in-

tensity than that in either of the other two cases; therefore the

value of the velocity of propagation will be greater than that given
in Eq. (214), which was deduced under the supposition of the sim-

ple ratio of the elastic force to the density expressed by ^- It
CL

might be supposed that the influence of the heat produced in the

condensation of the sound wave would be neutralized by the cold

produced in the rarefaction, and that therefore the resultant effect

would be zero. This, however, is not the case; for the heat in the

condensation has increased the difference of elastic force between

the condensed stratum and the one in its front, and hence has in-

creased the velocity, while the cold in the rarefaction has caused an

equal difference between the rarefied stratum and the one in rear,

and has thus added an equal increment of velocity to this portion
of the wave. This is true for each stratum affected by the sound

wave. Hence the disturbance passes each stratum of the condensed

and rarefied portions with the same velocity, and this may be re-

garded as the velocity of the wave.
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189. Since the vibrational number of sound waves varies be-

tween 20 and 40000, for the extreme limits, the alternate condensa-

tions and rarefactions occur with sufficient rapidity to necessitate

the application of the formula of Poisson for the determination of

the velocity of sound in air and in other gaseous media.

190. Pressure of a Standard Atmosphere. Let p
be the pressure of the atmosphere when the barometric column cor-

responds to 76cm., the mercurial density being 13.5962, and g
981 dynes ;

we then have

p = 981 x 13.5962 x 76 = 1.01368 x 106
dynes, (218)

as the corresponding pressure of the atmosphere upon a square cen-

timetre. But since the density of mercury, referred to the stand-

ard at the same locality, is independent of the locality, and hence

independent of g, we may assume as the standard atmosphere that

whose pressure on the square centimetre at all localities is equal to

106
dynes. Hence,

p = g x dm x li = 106
dynes. (219)

By substituting in this equation the value of g for the latitude

of the place, and solving with reference to h, we will determine the

barometric height corresponding to the standard atmosphere at that

locality; g varies from 978.1 dynes at the equator to 983.11 dynes
at the pole.

191. Height of the Homogeneous Atmosphere.
If the atmosphere be supposed replaced by an atmosphere of uni-

form density D, as that of standard dry air at C., and height IT,

exerting the same pressure, H may be obtained from the equation

p = g-D-II 106
dynes; (220)

from which we have

= 7989.40 m. = 26212.18 ft.,

which is constant at the same locality, for the same temperature
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and barometric height. If the temperature become 6 C., we have,

by the law of Charles or Gay-Lussac,

H' = (1 + 0) H = Ha T, (222)

in which r is the absolute temperature, and a the coefficient of

expansion.

192. Eeplacing the elastic force E by its equal, in terms of the

homogeneous atmosphere, in Eq. (214), we have

which is Newton's formula for the velocity of sound in air. Mak-

ing r = 273, corresponding to zero Centigrade, and g = 981 dynes,

we have

V = V 7.9894 x 105 x 981 = 2.8 x 104 = 280.0 metres. (224)

For any other temperature, we have

V = V7.9894 x 105 x 981 x T = 280Vl + 0. (225)

193. These values of the velocity of sound in air are about one-

sixth less than those determined by experiment, the discrepancy

being due to the supposition that Mariotte's law expresses the rela-

tion of pressure and density. The law of Poisson is, however, appli-

cable
;
hence we have

(D'\y
P =P

differentiating, dp' = yp ,

Whence we see that when a sound wave is passing through air,

the ratio of the increment of the elastic force to that of the density

is equal to the ratio of the elastic force to the density, multiplied by
the constant y. The value of y can be determined from a direct

observation, by accurately measuring F, a, and 6, and substituting
in the equation
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io4 x 2.= y r ^7
=

and solving with respect to y. Its value has been found to be,

approximately, 1.41 for all simple gases not near their points of

liquefaction. The final formula, therefore, is

y F= 338.64 m.xVrq^ )

= 1091.35 ft. X A/1 + .003660, )

for the velocity of sound in air at the locality where g = 981 dynes,
barometric height 76 cm., and temperature 6 Centigrade.

194. At West Point, assuming the barometric height to be

76 cm., and g = 980.3 dynes, we have, for the velocity of sound

in air at any temperature,

V = v'980.3 x 7.9894 x 1.41 x IO5 x T

= 332.3 m. x VF+~^ (229)

= 1090.23 ft. x Vl + 0.

Since the value of a = ^T ,
we see that the velocity increases

nearly 2 feet for each degree Centigrade, and hence is greater in

warm than in cold weather, all other things being equal. At

60 F., we may take the velocity of sound in air to be approxi-

mately 1123 feet per second.

195. The value of the velocity of sound in any gas can, in like

manner, be obtained theoretically by substituting in the equation

(330)

for D' the density of the gas referred to that of air as unity, and

for p' the value of the pressure in terms of the barometric height,

y being taken as 1.41 ;
or it may be obtained more simply by di-

viding
V = 332.3 m. x Vl + (231)

by the square root of the density of the gas referred to air as unity.
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At zero degrees Centigrade, we have for the theoretical value of the

velocity of sound in the following gases :

Air, .... ... 332

Hydrogen, 1269

Oxygen, 317

Carbon dioxide, .... 262

Carbon monoxide, . . . 337

Olefiantgas, 314

196. Velocity of Sound in Air and other Gases, as

affected by their not beiny Perfect Gases. The for-

mulae of Mariotte, Charles, and Poisson are only applicable to

perfect gases. This condition requires the elasticities to be perfect,

and the excess of the elastic force which gives rise to wave propaga-
tion to be indefinitely small when compared with the elasticity of

the gas in its quiescent state.

A series of experiments made by Eegnault, the results of which

are given in the Comptes Eendus, Vol. 66, page 209, show that

these conditions are not fulfilled, and that the theoretical velocity

therefore differs from the actual. The sounds were made in tubes

of different cross-section, by discharging a pistol with different

charges of powder. the results are grouped in the following table :

Diameter of Tube, 0.108 m.
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decrease less rapidly in tubes of larger diameter. Regnault also, by
means of sensitive diaphragms, followed the course of the waves
after they became inaudible, and obtained similar results with re-

spect to these. He found that a sound produced by a pistol dis-

charge, of one gramme of powder, became inaudible at distances of

1150, 3810, and 9540 metres, in tubes of 0.108 m., 0.30 m., and
1.10 m. diameter, respectively, and that the waves became insensible

after traveling distances of 4056, 11430, and 19851 metres respec-

tively. In the tube of 1.1 m. diameter, with a charge of 2.4 grains,
the wave ceased to be audible at 58641 metres, and ultimately ceased

at 97735 metres. These distances of audibility are, approximately,
directly proportional to the diameters of the tube.

198. The mathematical theory discusses the case of a perfect

gas, and assumes that the propagation in an indefinite tube is con-

tinuous. The above experiments show that this is not really the

case. The assumptions made by implication in a perfect gas are :

1. That the laws of Mariotte, Charles, and Poisson are true,

but it is well known that no gas obeys exactly these laws.

2. That its elasticity is unaffected by admixture with other

gases.

3. That the gas offers no opposition by its inertia to wave
transmission

;
but experiment shows that an intense disturbance

always produces a real motion of the surrounding particles, which

increases the velocity, especially within sensible distances from the

origin. Such is the case, no doubt, in cannon discharges, violent

lightning-flashes, and other like instances.

4. Theory supposes the excess of pressure due to a vibrating

body small, in comparison with the quiescent barometric pressure ;

but in the cases cited above, the excess of pressure at Mie origin

may be large, and hence cause an increase in the value of V near

the origin. Therefore, the correction of Art. 193, called that of

La Place, in such cases is not exact.

199. Regnault ascribes as the principal cause of the diminution

of the intensity, the loss of kinetic energy by the reaction of the

sides and ends of the tube, and confirms; this by the fact that the

sounds are quite audible outside the tube during their first passage,

and in a less degree at veach succeeding passage. As a secondary

cause, he ascribes the influence of the walls of the tube in dimin-

ishing the elasticity without affecting the density. This is con-
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firmed by the fact that in the above experiments, where the waves

have been produced by the same charge, and hence have* the same

sensibility at the origin, they have not the same intensity after

traveling over equal routes. The mean limiting velocity ought,

therefore, to be the same, if the weakening is due to the loss of mv2

on account of the sides. The experiments show that this is not the

case
; hence, the sides exercise another effect on air different from

that indicated as the principal cause of the diminution of the in-

tensity, an action affecting the elasticity and not the density. In

free air this effect would be null, and in the tube of 1.1 m. it is

taken as approximately so. The mean velocity of propagation, in

dry air at C., of a wave produced by the discharge of a pistol,

and estimated from the origin to the point at which its sensibility

can no longer be appreciated by the ear is, according to Regnault's

experiments,
F = 330.6 m.

The mean limiting velocity, considered from the origin to the

point at which its existence can 110 longer be, detected upon a sen-

sitive diaphragm, is

V = 330.3 m.,

which differs from the mean limiting velocity in the 1.1 m. tube by

only 0. 32 m.

200. Velocity of Sound in Gases independent of
the Barometric Pressure. Since an increase in the baro-

metric pressure increases the elasticity and density in the same

proportion, theory indicates that no change, due to this cause alone,

will take place in the velocity. The experiments of Stampfer arid

Myrbach in the Tyrol, in 1822, between two stations whose differ-

ence in altitude was 1364 m., and of Bravais and Martins in Swit-

zerland, in 1844, between two stations whose difference of level was

2079 m., indicated no variation in the velocity, due to the change
in the barometric pressure. Regnault's experiments upon air in

the tube 0.108 m. in diameter, over a distance of 567.4 m., with

pressures varying from 0.557 m. to 0.838 m., and over a distance of

70.5 m., with pressures varying from 0.247 in. to 1.267 m., found

no variation in the velocity, due to this cause.

The theoretical ratio of the velocities of sound in gases, given by
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V _ I'D

T~
~
\ ~D"

was experimentally confirmed to a near degree of approximation in

the cases of hydrogen, carbon dioxide, and air. The tube 0.108 m.,
filled for a length of 567.4 m., gave for hydrogen 3.801 m., for car-

bon dioxide 0.7848 m., which differ but little from the theoretical

values 3.682 m. and 0.8087 m., the velocity in air being taken as

unity. Hence the formula may be taken as an expression for the

limiting law. The determination of the velocity of sound in free

air was made by means of reciprocal cannon discharges. There

were two series of these experiments. For the first, consisting of 18

discharges, the membrane being 1280 metres distant, the mean

velocity, referred to dry air at C., was found to be

V = 331.37 m.

For the second series, of 149 discharges, over a distance of

2445 m., during 11 days of trial, with the temperature of the air

varying from 1.5 to 21.8 0., and with great variations in the

wind, the mean velocity, referred to dry air at C., was

V = 330.7 m.,

a sensible diminution of the velocity, due to the increased distance.

201. Velocity of Sound in Liquids. The value of the

velocity of sound in liquids is likewise given by the general formula

= V ~D^
~ V ~'^~

X
~D

(233)

in which H is the arbitrary barometric height, dm the density of

mercury, and g the acceleration due to gravity. The numerator is

then the pressure due to the height of the barometer, and when
divided by A, which is the diminution of the volume due to the

increase of pressure, gdmH gives the ratio of the pressure to the

corresponding compression, and is therefore the measure of the elas-

tic force of the medium. The square root of this quantity, divided
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l>y the square root of the density, will be the value of the velocity

of sound in the liquid.

202. Colladon and Sturm made a series of experiments to de-

termine the actual value of the velocity of sound in water, in Lake

-Geneva, in the year 1826. The sound was caused by the strokes of

a hammer upon a bell submerged one metre below the surface, and

so arranged that the epoch of the stroke could be determined by a

flash of powder. The instant of hearing the sound was indicated

by a stop-watch to within one-quarter of a second. The distance

traveled by the sound was found to be 13487 m. to within 20 m.,

and the time of this travel, from a mean of many experiments, was

found to be 9.4 s. The temperature of the water was 8.1 C., its

density at that temperature, referred to that of water at the stand-

ard temperature, was unity plus a negligible fraction, its compressi-

bility was taken at .0000495, and the barometric height at 76 cm.

The density of mercury referred to the same temperature is 13.544,

and g 9.8088.

Making these substitutions in the preceding formula, we find

/9.
=

V~
9.8088 x 13.544 x76

006645S

The actual velocity found was - - = 1435 m., differingy.4

from the theoretical value but 7 m. The latter may itself vary
within wider limits, on account of the inexactness of the value of

the compressibility of water, whose most probably correct value,

from the experiments of Regnault, is assumed to be .00004685.

203. The principal facts derived from these experiments of

Colladon are (Tome XXXVI, Annales de Chimie) that at distances

beyond 200 metres the quality of the sound is changed, and the

sensation is similar to the quick, brief noise 'produced by the strik-

ing together of two knife-blades in air. The diminution of inten-

sity with the distance is noticed, and at short distances, greater
than 200 metres, it is not possible to tell whether the sound origi-
nates at a near origin of weak intensity, or at a distant origin with

increased intensity. The duration is less than in air
; as it should

be from its value -, A being greater and V being smaller in air
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than in water. When the vibrations proceeding from the sounding

body reach the surface of the water at great angles of incidence, the

sound does not pass into the air. At distances greater than 400 to

500 metres, the ear in air does not hear the sound originating in

the water. At 200 metres the sound is readily heard. In these

experiments, the bell being placed 2 metres below the surface, the

angle of incidence at 400 metres is approximately 89 43'
; at 200

metres, 89 26'.

Finally, the existence of a sharper acoustic shadow shows that

the wave lengths are proportionally shortened in water compared
with the waves made in air by the same sounding body.

204. Velocity of Sound in Solids. The ordinary solids

upon which experiments have been made for the determination of

the velocity of sound are glass, the various metals, and wood. In

the latter, from the manner of its growth in the tree, the three di-

rections, along the axis, in the direction of the radius, and normal

to the plane of these two, possess necessarily different elasticities.

The coefficients of elasticity also differ in different species, and in

the same species, when grown in different localities, under different

circumstances of soil, temperature, and moisture. Reasonably
exact determinations belong then only to the particular specimen

experimented upon, and mean values are usually taken for any one

kind of wood in a given direction. In metals and glass, variations

of the coefficients arise from the methods of their manufacture, and

modifications result from every circumstance which affects their

density and other physical properties. None of the solids can be

said to be perfectly homogeneous ;
but on the assumption that they

are approximately so, different experimenters have obtained values

for their coefficients which do not vary between very wide limits.

205. In solids, the sound may result either from transversal or

from longitudinal vibrations. In the cases here considered, the

vibrations are understood to be longitudinal, that is, the molecular

displacements are in the direction of the propagation.
When a solid bar, taken as homogeneous, transmits a longitudi-

nal vibration, the velocity of the propagation has been found to be

given by the equation

(234)VI-
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Substi-in which A is the elongation due to the weight of the bar.

tuting for A its value in terms of Young's modulus,

and making s equal to one square centimetre, I equal to one metre,

and P the weight of the bar, we have

(236)r=t/5'
the same in form as has been found for gases and liquids.

206. Different methods have been employed to find E9 viz., by
the direct method of elongations or compressions, by flexure, by
transversal and by torsional vibrations of the bar. The values

given for the different metals, in Art. 23, have been obtained by
Wertheim, by the method of elongations. Could we accurately
determine the velocity of sound in solids by direct experiment, the

value of E could be readily found by the solution of the above

equation. But this velocity being very great compared with that in

air, and because of the impracticability of finding sufficiently long

homogeneous lengths, an accurate determination of E by this means

is impossible. Biot, by a direct experiment on 951 metres in length
of cast-iron pipe, found that the velocity was 10.5 times that in air;

but the want of homogeneity, due to the numerous leaded joints,

without doubt influenced this result appreciably. Wertheim found

about the same value in wrought iron, by experimenting upon
4067.2 metres of telegraph wire.

207. Assuming the experimental values for E given in Art. 23,

and taking g to be 981 dynes, the velocities of sound are, by the

above formula, found to be as follows :
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For glass, with density of 2.94, V has been found to be, by the

same method, 4.53 cm. x 105
;
and for brass, of density of 8.47,

V = 3.56 cm. x 105
;
or ,13.6 and 10.8 times the velocity in air,

respectively.

208. The following velocities of sound in wood, deduced from

the observations of Wertheim and Ohevandier (Comptes Rendus,

1846), are taken from "Everett's Physical Constants," page 65,.

from which also several of the above numbers have been obtained :
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and sin = .2325, or
(f>
= 13 26'.

For greater incidences the ray is totally reflected, and does not

enter the water.

211. Consequences of the Laws of Reflection.

1. If a sound originate at one of the foci of an ellipsoid, it will

be reflected to the other focus.

2. If at the focus of a paraboloid, the rays of sound will be

reflected in lines parallel to the axis, and can be again collected at

the focus of another similar paraboloid, with sensibly undiminished

intensity. The slightest sound, as the ticking of a watch, may be

employed to illustrate this case of reflection.

3. The speaking-trumpet and speaking-tube are employed to

prevent the too rapid dissipation of sound. The former, partly by
reflection from its sides and largely by resonance, concentrates the

sound within the volume of the cone whose apex is the mouth-

piece and whose section is that of the other end of the trumpet.

The speaking-tube confines the energy in the narrow compass of

the tube, the loss being insignificant in the ordinary lengths em-

ployed.

4. When a sound is reflected by any
obstacle which prevents its direct trans-

mission, and the observer is at such a dis-

tance that the direct and reflected sounds

are not confounded, the reflected sound is

called an echo. Thus, if A be the position
of the observer, S the origin from which a Figure 28.

sound of short duration emanates, and W
the obstacle, such as a wall, then the direct sound will reach the

Q A

observer in the time ^-j, and the reflected sound in the time
oo&A

SW + WA . A0 r SW + WA SA ,

-3^-4 , the temperature being 0. If - ^ ^
- be

sufficiently great, so that the reflected sound arrives after the ces-

sation of the direct sound, then the echo will be heard, provided
the intensity be of sufficient value. If the two sounds commingle,
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the resultant sound will be prolonged, and partial resonance will

ensue. The number of distinct impressions distinguished by the

ear will determine the shortest difference of route necessary to es-

332
tablish the echo. Thus, if we take nine per second, or 37 m.

is the shortest difference of route at C.

5. The conditions of interference of sound are the same as

those discussed in Arts. 65-68. Hence, it is theoretically possible
that two sounds affecting the ear simultaneously will result in

silence, and practically it will be shown, in the lectures on this part
of the course, that such an experiment is also possible. Other illus-

trations of interference are also reserved for the lectures.

212. Refraction of Sound. In order that the rays of

sound shall converge after deviation by refraction, we see from the

Y
formula that fi -=-, must be greater than unity. Then the

deviated wave will, in general, become converging, and the energy
accumulate on an ever decreasing surface. Examining the table,

Art. 195, we see that V in carbon dioxide is 262 m., and hence,
when the incident medium is air,

- 332 - 1 25^ -262-
5'

and sin $ = 1.25 sin
</>'. (238)

The sound lens devised by Sondhaus is a double convex lens of

collodion filled with carbon dioxide, which collects the sound rays

proceeding from any sonorous body and concentrates them appre-

ciably at another point on the opposite side of the lens. By means

of a concave lens of the same material, filled with hydrogen,
V = 1269 m., it will be evident, after the study of the properties

of lenses, as explained in optics, that a similar result would be

effected. The slight noise produced by the ticking of a watch may
be collected by this means at a point so that the noise is audible,

when without this assistance it would be inappreciable at the same

point.

213. General Equations for the Vibratory Mo-
tion of a Stretched String. The bodies usually employed
to produce musical sounds by their vibrations are strings, rods air-
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columns, plates, bells, etc. When the vibrations of the particles

are perpendicular to the direction of wave propagation, they are

called transversal, and when in the same direction, longitudinal.

We will first consider the vibrations of a perfectly elastic and

flexible string, supposed to be stretched between two points whose

distance apart is I, by a force which produces a tension T. Let the

elongation be that given by

I' -1 =
^1, (239)

in which I is the natural length, I' the length after the tension T is

applied, and E is the longitudinal modulus. If the displacements
of the string froin its position of rest be due to the incessant action

of forces whose rectangular accelerations are X, Y, Z, these with

the tension T will be the only extraneous forces considered.

Let m be the mass of any element
\ x, y, z, x + dx, y -f dy,

z -f dz, the co-ordinates of its extremities and its length ds ;
cc the

area of its cross-section, and p its density ;
then

m = pads.

Let the components of T at x, y, z, be

T T^- T--
ds

9
ds

'

ds'

and at x -f- dx, y + dy, z -f- dz, be

2*~ 4-^7* T^y. \ dT^- 77 ^4_/77T^J

.

ds ds' ds ds
9

ds ds'

The general equations of motion will then be

(240)

214. These equations are simplified when we suppose that the

string is arbitrarily displaced from its position of equilibrium, and
9
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abandoned to itself, without the action of the forces Jf, Y, Z. It

will then oscillate about its position of rest, and the only extraneous

force that acts will be the tension T, whose intensity will vary be-

tween known limits. Let the axis of x coincide with the string in

its position of rest, and the co-ordinates of the element m, at the

time t, be x -f- 1, 77, If the displacement be supposed small, ,

??, and are functions of x and t, and x is independent of t, and the

above equations reduce to

(241)
ds

Let T' be the tension when the string is straight, and

the string is displaced; the length of the element is in the first

case dx, and in the second ds
;
these are connected by the equations

(242)

(243)

(244)

(245)

ds = a

d& = (dx + d!;)* + drf + dt? ;

from which, when dr) and d are very small, we have

ds = dx -\- d%,

T= T' + E-
dx

Substituting in Eqs. (241), we have

(246)
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E T'
Keplacing and by u2 and ^ respectively, we have

pa pa

_
dt*

~
da?-'

^n _ 2 dfy

dP
~

do?'

*- v*
d-S.

dP
~

dx*

(247)

The integration of these three partial differential equations give

(Analytical Mechanics, Appendix IV),

-
vt), (248)

? = F(x+ vt) +f(x-vt). )

215. The first equation determines the longitudinal vibrations,

or those along the axis of the string, and the other two give the

transversal vibrations along y and z respectively. Because of the

independence of the differential equations, the three vibrations in

general coexist and are wholly independent of each other, and since

the differential equations are of the same form, we see that the two

kinds of vibrations are subjected to the same laws. They may each

be discussed separately. Each is due to a progressive motion for-

ward and backward along the string. These motions may be of

the most varied character, but the particular form of the motion

depends on the form of the functions whose symbols are F and/.
The only conditions imposed so far are that for x = and x = I,

I, TJ, and are zero for all values of t. These, together with any
assumed initial conditions, will enable us to determine the form of

the functions F and /, and thus complete the solution of the

problem.

216. Since the vibrations parallel to y and z are exactly alike in

every particular, the discussion of one will do for the other, and we
will consider that of y, given by the equation

il
= F(x + vt)+f(x- vt}. (249)
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Assume the conditions" that at the epoch, or when t 0,

??
= 0(z) and

jj=vil>'(x), (250)

in which the functions and are supposed known, and that 0' is

the derived function of -0. If t = 0, Ave have

7?
= 0(3) = ^(z)+/, (251)

J-J-y<)-=^-<4-/
f

(*);/ (252)

/. 1>(x) = F(x)-f(xj; (253)

and hence, F(x)
= +M+W

9 (354)

Therefore ^(z) and /(#) are known for all values of x from

to I, when, as is supposed, (x) and -0 (x) are known between

the same limits.

For the extremities, we have, by placing x = and x = I,

F(vt) +f(-vt) = 0; (256)

F(l + vt)+f(l-vt) = 0; (257)

whence, F (vt) and.f(vt) are equal, with contrary signs, and

thus become known for all values from t = to t = <x> .

217. The value of r\ can be expressed by means of a single func-

tion by substituting vt + I x for vt in Eq. (257) ; whence,

-F(M x + vt) =f(x vt) ; (258)

which in Eq. (249) gives

?i F(x + vt) F (21 x + vt). (259)

Again, for vt, in Eq. (257), substitute I + vt ;
then

.F (2? + vt) = f(vt) = F (vt) ; (260)

whence we conclude that the function F takes the same value when
the variable vt is increased by 21

;
and therefore by 4/, Ql, SI, ----
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or 2nl, n being a positive whole number. Therefore, if F (vt) is

known from vt = to vt = 21, its value is known for all values

from t = to t = oo .

Replace vt by I vt, in Eq. (257), vt being less than I
;
then

F(2l-vt) = -
(261)

but f(vt) is known for all values of vt between and Z; therefore

F (vt) is known for all values of vt between I and 21.

Hence, the value of F (x 4- vt) is known for all values of x-\-vt

from to oo
; and, similarly, the value of f(x vt) can be found

for all values between and oo; and therefore the problem is

completely solved.

\A,

Figure 29,

218. The function whose symbol is FIB subject to the following

conditions, derived from Eqs. (256), (257), (260), (261),

F(x) = -F(-x),

F(l + x) = -F(l-x),
F (x) = F (21 + x) = F (1 + x)

F(x] = -F(2l-x) = -F(l-x) =

(362)

(263)

(264)

(265)

From Eq. (262) we see that the curve represented by 77
= F (x)

is continued in similar forms on each side of in the figure ; from

Eq. (263), that the forms are similar on each side of A; from Eq.

(264), that the form is repeated from 0' to 0" exactly as from to

0'; and from Eq. (265), that the form of the curve inverted is the

same from 0' to A as from to A.

The motion of any particle is that of oscillation about its place

21
of rest, and of which the period is This vibratory motion is

gradually diminished, while the period remains unchanged, because
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of the energy communicated to the air, and through the points of

attachment to other bodies. The time of one complete oscillation is

(366)

and the number of oscillations in the unit of time is

Therefore in the transversal vibrations of a string, the resulting

pitch is inversely proportional to its length, directly as the square
root of the tension when straight, and inversely as the square root

of the density by the area of cross-section.

219. The number of longitudinal oscillations in the unit of

time is

whence the pitch depends only upon the length of the string and
the material of which it is made, and is independent of the tension,

unless the latter should be so considerable as to change the value

of E. Experiment appears to indicate that the longitudinal pitch
increases slightly with the tension

;
but this may be accounted for

in the elongation experienced, which is always accompanied with a

slight diminution of density p, and should this occur, the formula

indicates that the pitch should rise.

The ratio of the numbers for the same string is given by

^.;:'V
(269)

M. Cagniard Latour experimented on a cord of 14.8 m. in

length, and found

and AZ = 0.05 m.

Substituting in the formula, we have

188

whence, A? = 0.052 m., a sufficiently near approximation.
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220. The preceding values of n and ri are the least numbers of

transversal and longitudinal vibrations of the string, and therefore

correspond to its fundamental tones; but we know that each of the

vibrations is decomposed into any number of vibrations of equal

periodicity, when the string is divided into a like number of sym-
metrical parts. This can be shown more readily when the integral

equation is expressed in a series which is a function of sines and

cosines. Thus, it is evident that a possible solution of the differen-

tial equation

is given by
%-nvt n . invt\ . inx

cos j- BI sm -- sm --
, (271)(

when the conditions with respect to the extreme points are un-

changed. In this equation, i is any entire positive number which

marks the order of the term, and A ir B^ are constant coefficients

depending on i and on the initial state of the string. If then this

state is such that
77

is constant only for the terms for which i is a

multiple of another entire number n, the string will return to the

21
same state at the end of each interval of time , which is the

nv

duration of its similar and isochronous vibrations. Under this sup-

position, the n 1 points of the curve corresponding to distances

* - - - t
fi n n

will be nodes, that is, will remain at rest during the whole period
of the motion.

Since the value of 77 is linear, every value corresponding to i =
1, 2, 3, 4, etc., will be a solution, and the sum of all the values of

77

will also be a solution of the differential equation ;
hence we will

have for the general integral equation

. / j *7r?^ n t^lfl/l m 1/TTtJC tf^^i

T)
= SiSr\4i cos

7 h BI sm nrrJ sm ~r~* (272)
\ i ill

221. The values of A 1B IJ A 2B Z , etc., are in general arbitrary,

and we may suppose all to vanish up to any order n, while the rest

remain arbitrary. If A^B^ are not zero, there are no actual nodes
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except the fixed ends, and the first simple tone is that whose period
is r and whose wave length is 21. If there is one node, the period

is -, and the gravest . simple tone is that of wave length I; and,
/v

generally, if there are n 1 nodes, the period is -
, and the

ti

gravest tone is the (n V)
th harmonic of the fundamental tone.

When the string vibrates without nodes, the series of harmonic

tones is in general complete, and a practised ear can distinguish ten

or more. It is also possible to make a string vibrate in such a man-
ner that for any proposed value of n the coefficients A n ttn, A^nB^n ,

etc., shall disappear, so that the component harmonic vibrations

whose periods are -, , etc., are extinguished. When this i&
Ti &tl

done, the ear does not distinguish these tones, and we may therefore

conclude, from what precedes, that each component tone actually
heard is produced by the corresponding harmonic vibration of the

string.

222. The same general method may be applied to the longitudi-
nal vibration of a rod, and the differential equation will be, as in

the case of the longitudinal vibration of a string, of the form

3 -"3- '

of which the integral equation is

= F (x + Vt) + f(x - Vt\ (274)

and which may be put under the form of

.. ITTX I A iirVt . ITT FA /rt)V K\= x + 2 cos
j- (Ai cos

j h Bi sin
^

), (275)

in which is the distance from the fixed origin at an}' time t to the

particles in a plane section of the rod, of which the natural distance

from the end of the rod is x. The value of x therefore depends

only on the particular section considered, and is independent of the

origin of
;
but if the vibrations cease, the periodic part of Eq.

(275) would vanish, and we would have = x for all points of the

rod, and therefore the periodic part gives the displacement ( x)

at the time t of the section determined by the value of x.
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The periodic part does not in general vanish for any value of xy
so that there are in general no nodes. But there will be n nodes at

sections for which x is any odd multiple of , provided At, Bi>

vanish for all values of i except odd multiples of n. Thus the rod

may have any number of nodes, of which those next the ends are

distant from the ends by half the distance between any two consec-

utive nodes.

inx I

'

inVt . ircVt\ /<lw/,v

\Ai cos ---h fy sin j j
; (276)

223. Differentiating Eq. (275), we have

d% rr ^ . t

j-
= I j Zi sm

which, when x = and x = Z, becomes

= 1- (277)

But =
,dx p

in which p' is the natural density, and p is the changed density.

We see, therefore, that there is no change of density at the free

ends. If Ai, BI, vanish, except where i is a multiple of n, the

variable part of -=- vanishes when # is a multiple of - Hence,
dx n

where there are nodes, the sections in which there is no variation of

density are those which bisect the nodal intervals in the state of

equilibrium, and these sections of no variation of density are also-

"ITTX
sections of greatest displacement, since, Eq. (275), cos -=- is equal

p

to 1 for values of x which make sin 0.
l

224. The vibration represented by Eq. (275) consists of an infi-

nite number of simple harmonic vibrations, each of which might
subsist by itself; the nth component would have n nodes, and its

21 21

period would be -^=
, the period of the fundamental tone being = ;

therefore the wave length is twice the length of the rod. For the

general case in which there is a node at the middle of the rod,

cos -j-, vanishes for all values of i when x = ~- Then A^ BI,
I A
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must vanish for all even values of i. The gravest tone is then the

fundamental tone of the rod, and the higher tones of even orders

disappear. The first tipper tone will be a twelfth above the funda-

mental. In this case, the middle section might become absolutely

fixed, and either half be taken away without disturbing the motion,

so as to leave a rod of half the length, with one free and one fixed

end. Therefore the fundamental tone of a rod with one end fixed

is the same as that of a free rod of twice the length. The wave

length is then four times the length of the rod, and the even orders

of the harmonics are wanting.
225. The vibrations of air columns are theoretically the same as

that of a free rod or one fixed at an end, and the same conclusions,

modified by the elasticity of the air and its velocity of wave propa-

gation, will theoretically apply. We will, however, determine the

positions of the nodes and ventral segments of vibrating air columns

in a simpler manner.

226. Vibrations of Air Columns. We will first sup-

pose a single sonorous pulse moving in an air column, and consider,

1, the column closed at one end and open at the other. Each

stratum passes through all changes of density during the periodic

time r, while the pulse moves a distance A
;
the air particles de-

scribe longitudinal vibrations, whose amplitudes depend on the

intensity of the sound. When the condensation, which we suppose

is in advance, reaches the closed end, the air stratum at that place,

not having freedom of motion, undergoes changes of density alone.

These changes are each immediately reflected in succession, and the

condensation moves from the closed end with the same velocity with

which it would have proceeded beyond had there been no obstruc-

tion to its progress. Hence we see that at the instant the rarefac-

tion first reaches the closed end the reflected condensation affects

the same strata as the incident rarefaction, and disregarding the

loss due to incidence, the air strata will, at this instant, in the

length
- from the closed end, Have their normal density through-
/c

out. The velocities of the air particles, at the same instant, will

likewise be that compounded algebraically of those belonging to the

reflected condensation and incident rarefaction. Now when a

sonorous body is vibrating, the sound undulations follow each other
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periodically, and therefore the reflected and incident pulses will be

distributed throughout the column. The densities and motions of

the strata will therefore result from the combination of the same

elements in the incident and reflected pulses.

227. Let the curve rm"mA represent the direct wave at any

instant, and its ordinates the corresponding compressions and dila-

tations of the air on the line rib' due to this wave; the curve

m"m't)A. and its ordinates will, in like manner, represent the re-

flected wave from the stopped end AA'.

Figure 3O.

We see that at points such as v, v', etc., at JA, JA, etc., from

AA', the condensations or dilatations due to the direct wave will

always be contrary and equal to the dilatations or condensations due

to the reflected wave; hence, at these points, the normal density of

the air will ever exist. But at points such as n, ri, etc., at distances

of
-|-/l, A, fA, etc., from AA', the condensations or dilatations of each

are of equal value, and of the same kind, and exist simultaneously ;

therefore the resultant condensation or dilatation is double that due

to either. At these points then the air undergoes all variations of

density during the period r. The density at all points from n to v

and to v', undergoes decreasing variations from the maximum at n
to zero at v and v'.

228. With regard to the velocities of the air particles at differ-

ent distances from AA', since the motions of the particles change
direction abruptly at reflection, the ordinates of the curve A'bmo

will represent the velocities due to the reflected wave, and those of

Amm"r may now represent those of the direct wave. Then at v, v'9

etc., the velocities are zero only at instants separated by -, and at
<o

all other times have values that vary from zero to that represented

by double the maximum ordinate ; at n, ri, etc., the velocities are
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always zero, and therefore the air at these points is quiescent, while

undergoing changes of density. At intermediate points, both

changes in velocities and density occur.

Hence, we conclude that nodes will be developed in a column of

air closed at one end, when it is traversed by a sonorous wave, at

distances from the stopped end of 0,
-

, , , etc.

The vibrating parts between the nodes are called ventral seg-

ments, and their middle points are at distances of
^, , , etc.,,

from the stopped end.

229, 2. Open Air Columns. Let the two tubes AM
and MB, of unequal diameter, be united at M, and admit that there

is no abrupt change of density of the air at M. The consequence
of a contrary supposition is that the opposite sides of the infinitely

thin stratum M would be subjected to unequal pressures, whose

finite difference wonld generate in M an infinite velocity in a finite

time. Hence, the density has the property of continuity in its

variation throughout AB. It is not essential that the variation of

the velocities of the particles of air should be continuous, nor is it

incompatible with this condition.

Let s and s
f

be the areas of sections M B

in AM and MB, indefinitely near M;
v and v' the velocities of the air parti-

cles in s and s', at the time t
;
then

vsdt and v's' dt will be the volume of Figure 31,

air passing s and s' during dt, and

(vs v's') dt will be the increment of the quantity of air in the

volume ss' in the time dt, which will be proportional to the increase

of density in ss'. But in order that the increment of density may
be compatible with the supposed continuity of the pressure, it is

evident that (vs v's') dt must be an infinitesimal of the second

order, and equal to zero when s and s' are coincident. Hence, at

the limit we have
vs = v's

r

;

therefore, there will be a wave propagated in MB, whose intensity,

determined by the value of v', will become more and more inappre-
ciable as s' becomes greater and greater than s. Let MB be in*
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creased indefinitely in area, as when the tube AM opens into the

external air, then v' becomes very small, and the transmitted wave

becomes negligible, as is the case in open pipes. There will then

be a reflected wave in AM, composed of a rarefaction followed by

a condensation, when the direct wave is a condensation followed by

a rarefaction. The velocities of the air particles will then be theo-

retically equal in value, and the same in direction in the two waves.

The curves of Fig. 30 will illustrate the case of open pipes, if A'bof

represent the densities and Abm"f the velocities of the air particles

in the reflected Avave. The nodes and middle points of the ventral

segments will then be at distances of

A 3A 5A 7A

4> T> T' T'
ltc"

2A 4A 6A
and 0, --, ,

-j-,
etc.,

from M, the open end of the tube, respectively.

230. These laws, which determine the positions of the nodes

and ventral segments of vibrating air columns, are known as Ber-

nouilli's laws. F/om them we see that the harmonics of open pipes

are in the order of the natural numbers, and that those of closed

pipes are as the odd numbers. Thus, the open pipe can give, by
an increased pressure, the octave, the twelfth, the fifteenth, etc.,

while the closed pipe gives the twelfth, the seventeenth, etc. Ex-

periments with organ-pipes verify the laws of Bernoulli! only approx-

imately ;
that is, that the nodes are not exactly at the positions

defined above, nor are the nodes exactly places of rest. Organ-

pipes are usually made to speak by forcing a current of air through
a narrow slit, and causing it to impinge against a thin lip. Of the

many vibratory motions produced in this manner, there is always
one whose periodicity is such that, by the resonance of the pipe, its

intensity will be raised to such a degree as to produce a marked and

determinate musical sound, called the fundamental tone of the

pipe. Other vibratory motions, which undoubtedly exist, are either

destroyed by the interference of the reflected waves, or have so feeble

an intensity as to be negligible. The wave length of the funda-

mental tone is, as we have seen above, double the length of the

open pipe, or four times the length of the closed pipe, approxi-
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raately. The discrepancy between experiment and theory arises

from the fact that the hypothesis is not in accord with what actu-

ally occurs in the pipe. Without considering these minutely, it is

sufficient to note the perturbations at the embouchure by the air

current, the modifications in the pipes by the moving air, and the

induced vibrations of the material of the pipe at the sides and

closed end, to account for the greater discrepancies.

231. Relative Velocities of Sound in Different

Material. Since in any medium, we have A Vr = V-, in

which n is the vibrational number for a note of definite pitch, A the

corresponding wave length in the same medium, and V the velocity

of sound, it is readily seen that if free rods of different material be

taken, of such lengths as to give the same note when put into

longitudinal vibration, we will have

A = V-, A' = V-, A" = V"-, etc.;n' n n

whence

A: A': A" :: V: V : V".

A A' A"
But as ^, , , etc., are the lengths of free rods that give the

<i 6 A

fundamental tone, we see that such lengths are directly propor-
tional to the velocities of sound in the several media, when their

lengths are great compared to their cross-sections. Knowing then

the velocity of sound in any material, we can by experiment find

that in others by this method. Then having the velocities, we can

by substitution in the formula

find the value for the longitudinal modulus E.

232, Applying the same principle to any gas and comparing the

velocity in it with that m air, by the formula
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the values of y, or the ratio of its specific heats, can be readily
obtained. By this means Dulong found the following results :
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thickness, measured in the plane of vibration ; I is the length, E
the rigidity, and D the density of the rod.

234. This formula shows that the vibrational number is inde-

pendent of the width, provided it be small as at first supposed ;

that it is directly proportional to the thickness, inversely as the

square of the length, and directly as the square root of the rigidity

divided by the density.

1. The rod is free at both ends. Lissajous has determined

by careful experiments that the following formulae apply, viz. :

in which I is the length, n the number of nodes formed, d the dis-

tance between two consecutive nodes, 6- the distance from the free

ends to the nearest nodes, and s' the distance from the free ends to

the second nodes. Hence from these formulae, we see that the

intermediate nodes are equidistant; that the distance from the

extreme nodes to the next adjacent is nearly 0.92 of the distance

between two consecutive intermediate nodes ; that sis' :: 0.2643 : 1,

and s:d :: 0.33 : 1. Experiment confirms these results whatever be

the number of the nodes. The positions of the nodes are made visi-

ble by sprinkling sand on the bar, and noticing the lines on which
it accumulates when the bar or rod is put in vibration.

2. Both ends are fixed. When the ends are so fixed as not to

modify its elasticity at these points, it can vibrate freely, and the

nodes are found to be located at the same places as in a free rod of

the same length, except that the extreme nodes are at the fixed

ends. The first two of formulae (280) are then applicable to this

case.

3. The rod is fixed at one end and free at the other. There
will then be 0, 1, 2, 3, .... nodes depending upon the manner by
which it is put in vibration. If the fixed end be regarded as a

node, the first of the above formulas is applicable, and the other

two apply to the free end only. Therefore these first three cases

are all reducible with the modifications mentioned to that of a free

rod at both ends.

4 and 5. In these cases the supported end may be considered

as an intermediate node, and we can consider the rod as half of a

rod of double the length, free or fixed at both ends in which the
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number of nodes is 2n l. Replacing I by 21 and n by 2n 1,

we then have

7
41 ,51 1.3216 /

J== '
= :

of which the last two apply only to the case where one of the ends

is free.

6. If the supported ends be regarded as intermediate nodes

we have

235, Harmonic Vibrations of Elastic Hods. When
the vibrating parts are known, the harmonies of the rod are easily

determined, and considering the fixed extremities as nodes, the

formulae of Lissajous above given become general for the six cases.

In the first three cases the sounds resulting are the same for the

same number of nodes, whatever be the condition of the extremity,
whether fixed or free. The numbers of vibrations are as 32

, 52
, 72,

---- (2n I)
2
, when there are 2, 3, 4, ---- n nodes. In the 4 and

5 cases where one of the extremities is supported, the vibrational

numbers are as 52
, 92

, 132
, ---- (4ra 3)

2
;
and in the 6 case the

numbers are I2, 22
, 32

, ---- (n I)
2
, n being the number of nodes.

Comparing in all these cases the vibrational numbers for two

nodes, we have
25 9 25

9: T :4> r
4

:

16
:1

'

and therefore generally

4 16
For d we have

21 4?

2n l' 4^ 3' n l

Substituting the value of n taken from the latter in the former,

we have

~
(383)

If d = ?, which corresponds to a rod supported at both ends and

yielding its fundamental sound, we have N = 1. We therefore con-

10
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elude that when a rod gives a harmonic,, the parts comprised between

the nodes vibrate as rods whose extremities are supported and whose

length is the distance between the nodes, and that the vibrational

number is inversely as the square of this length. This conclusion

is inapplicable to the first nodes, because they are more or less

influenced by the extremities.

236. Tuning Forks. A tuning fork may be regarded as a

rod or bar free at both ends. Experiment shows that in proportion
as a bar free at both ends is bent or curved the extreme nodes

approach each other. Thus, in the

figure the bar ab if supported at the

points 1, 2, one fourth the length
of the bar from the extremes, will

when vibrated transversely develop
nodes at these points. In the forms

a'V, a"b", a"'V", the length remain-

ing unchanged, the nodes approach
each other as indicated in the figure.

The laws which govern the vibration

of a fork whose section is rectangular have been experimentally
found to be ; 1, that the vibrational number is independent of the

width
; 2, proportional to the thickness

; 3, inversely proportional

to the square of the length increased slightly. The length is taken

as equal to the projection of the prongs on the medial line of the

fork. For a fork of rectangular cross-section we have from the

experiments of Mercadier.

(284)

Figure 32,

in which N is the vibrational number, t the

thickness, and I the length ;
is a constant

which for steel is found to be 818270. When
the fork yields its fundamental note its method
of division is shown in the figure. The over-

tones of a fork correspond to vibrational

numbers which are to each other, beginning
with the first

; as, 32
: 52

: 72 : etc. The vibra-

25
ticnal number of.the first overtone is about -- T

Figure 33.
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that of the fundamental. Helmholtz found by experimenting on

many forks, that it varied from 5.8 to 6.6 that of the funda-

mental. These overtones are so high, that they are generally of

short duration, and they are also inharmonic with the prime.

Tuning forks are generally mounted on their resonant boxes, by
which arrangement the prime tone of the fork is greatly rein-

forced to the disadvantage of the overtones. The duration of

the vibration of a fork although theoretically constant, is found

to increase slightly with an increase of amplitude and tempera-

ture, thus slightly lowering the pitch. This is, however, not

appreciable to the hearing, but can be detected by any of the graph-
ical methods for determining the number of vibrations in a given

period. It is a matter of importance in determining the initial

velocity of projectiles, by means of the Schultz chronoscope or other

devices, where the vibrations of a tuning fork enter into the calcula-

tion, to limit the amplitude and to take note of the temperature, in

order to obtain uniform and reliable results. When the amplitude
does not surpass 3 or 4 mm. and the temperature varies but little

beyond the ordinary atmospheric temperature, the vibrational

number may be taken as constant within .0001 of its value.

237. Vibration of Plates. Plates are rigid bodies, gener-

ally of metal or glass, whose length and breadth are very great

compared with their thickness. To put them in vibration, one or

more points are fixed and a violin bow is drawn across an edge.

The circumstances of vibration are exhibited by sprinkling fine

sand over the surface and examining the nodal lines formed by the

sand which seeks that part of the plate which is at rest. The parts
of the plate separated by a nodal line, evidently vibrate in opposite

directions, and therefore for permanent figures the number of

vibrating parts must be even. When the plate yields its funda-

mental tone the resulting figure is the simplest that can be formed,
and as the plate separates into a greater number of vibrating parts,

the figures become more complex. Chladni has given to these

figures the name of Acoustic figures. As yet, from the inherent

difficulties of the problem, the mathematical laws have not been

deduced, but experiment has assigned the following as the laws of

vibrating plates, viz.
; 1, the vibrational numbers of plates of the

same form and of the same material are inversely as the squares of
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the homologous dimensions
; 2, and are proportional to the thick-

ness. Hence we have

t_ V_

P
''

I'*'

n : n

If a rectangular plate be so constructed that a system of nodal

lines parallel to the length be formed by a sound, which gives

another system of nodal lines parallel to the breadth, when it is

vibrated in these two ways, then if at any of the middle points
of the ventral segments it be vibrated so as to produce the same

sound, these two systems will simultaneously exist and the acoustic

figure will result from the combination of these two systems. The

figure illustrates five such plates where the numbers of the nodal

lines are in the ratios of 2 : 3, 2 : 4, 3:4, 3:5, 4:5. Other combi-

nations illustrative of the vibrations of plates are reserved for the

lectures.

S:6 4:5

Figure 34i

238. Vibration of Membranes. When a stretched mem-
brane is near a sounding body, the air transmits to it the vibratory
motion. It can respond, however, only to certain sounds depend-

ing on its tension, and thus enter into synchronous vibration.

This fact is made evident by the acoustic pendulum, or by the

nodal lines formed by sand sprinkled upon it, as in the case of the
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vibration of plates. The frames upon which the membranes are

stretched are generally square or circular. Experiment has con-

firmed the following deductions of Poisson and Lame, with respect
to the vibrations of square membranes, viz. :

1. Membranes respond only to certain sounds, separated by
determinate intervals.

2. To each sound a system of nodal lines corresponds, parallel

to the sides of the membrane, and whose numbers are represented

by n and ri.

3. The nodal lines which correspond to the same sound form a

system of figures, such that we can pass from one to the other by
continuous changes in varying the mode of disturbance, without

changing the sound
;
but we can never pass in a continuous man-

ner from the lines of one sound to those of another.

Circular membranes can only give nodal lines along the,diam-

eters or circumferences, either separate or combined, depending on
the method of vibration and on the point or points of enforced rest.

239. Because of the limited time allotted to this part of the

course, many subjects of importance are necessarily omitted in the

text. Among these are,

1. The theory of beats, and resultant sounds.

2. The phenomena of interference, whose consequences, how-

ever, are readily derived from the discussion in Arts. 65-68.

3. The graphical and optical methods of the study of sonorous

vibrations, and that by sensitive and manometric flames.

4. The phenomena of vibrations of air columns in organ-pipes,
of elastic rods, of plates and membranes, with the applications of

the latter in the phonograph, phonautograph, and telephone.

By means, however, of a very complete acoustical apparatus,

mainly from the workshop of Koenig, the celebrated physicist of

Paris, the omitted parts, as well as those treated of above, are illus-

trated in the lectures, which largely supplement and complete the

study of the text.

240. The nature and essential principles of undulatcry motion,

as illustrated by sonorous vibrations, have received sufficient atten-

tion to enable the student to prosecute understandingly the study
of similar principles connected with light in the analogous subject
of optics.



PART III.

OPTICS.

241. Light is the agent by which the existence of bodies is

made known to us through the sense of sight.

That branch of physical science which treats of the properties

of light and the laws of its transmission is called Optics.
242. It is divided into two parts :

1. Geometrical Optics, which embraces all the phenom-
ena relating to the propagation of rays, based on certain experi-

mental laws, and which is entirely independent of any theory as to

the nature of the luminous agent.

Experiments in Geometrical Optics, however carefully made,
can never accurately prove the laws of light propagation, but serve

merely to establish a certain degree of probability of their truth,

and which, when applied to other phenomena of the same nature,

strengthen this probability in proportion as the application is more

extended.

2. Physical Optics9 which is based on the theory of un-

dulations, and seeks to explain by this theory the nature of light,

and of all the phenomena arising from the action of rays on each

other.

243. That light is not a material substance, but is merely a

process going on in some medium, is proved by the phenomena of

interference, in which results of various magnitudes occur, from

less to greater, or the reverse, depending upon the manner in which

the interference takes place, even when the combining magnitudes
are themselves constant in value.

244. The undulatory theory asserts that light is due to the

transmission of energy from luminous bodies to the finely-divided

parts of the optic nerve, spread over the interior concave surface of
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the eye. This energy is conveyed by the optic nerve to the brain,

and there transformed into the sensation of sight.

The transmission of the energy is accomplished by undulatory
motion in a medium called the luminiferous ether. There is no

direct proof of the actual existence of the ether, and its assumption
can only be regarded as an extremely probable hypothesis, supported

by nearly all the known phenomena of light, and directly contra-

dicted by none.

Within the present century, its reality has been almost uni-

versally accepted, and as a consequence the undulatory theory has

entirely supplanted the rival hypothesis of the materiality of light

. molecules, known as the emission theory, which had, however, held

its ground for many years.

245. The accepted properties of the luminiferous ether have

resulted from theoretical considerations, modified from time to time

by deductions from experimental observations, and while there are

several imperfections yet to be removed, nevertheless the strong

array of unquestioned facts, both observed and predicted, has estab-

lished these properties as a satisfactory foundation upon which
modern physical optics is now constructed.

The luminiferous ether is considered to be a material substance

of a more rare and subtile nature than the ordinary matter affecting
the senses, and to exist not only within these bodies, but through-
out space. It has great elasticity, and is capable therefore of trans-

mitting its particular energy over vast distances, with great velocity
and with inappreciable loss. That this energy is not transmitted

instantaneously has been proved by direct experiment, and con-

cluded from several astronomical observations.

246. That light is propagated in right lines from the source is

a fact of observation and experiment. This statement, however,
while absolutely true, is subject to modification when taken in the

ordinary sense of the language. Thus, we have seen that while

sound is propagated in right lines from its source, it is capable of

spreading around an obstacle, so that sound can be heard out of the

direct line of the source
; so, in a less degree, we can see around an

obstacle, as will be shown in the discussion of the diffraction of

light.

The acoustic shadow, however, is as much less marked than the

optical shadow as the wave lengths of sound are greater than the



152 ELEMENTS OF WAVE MOTION.

wave lengths of light. But for the explanation of the principles of

geometrical optics it is unnecessary to consider this refinement.

247. Bodies are called self-luminous when they are themselves

the sources of light, and rays proceed directly from them. They
are visible because of their emanating rays. Other bodies are called

non-luminous, and become visible because rays from luminous

bodies are reflected from their surfaces.

A luminous point, or origin of light, is a very small portion cf a

luminous surface. When light emanates from a luminous point,

we consider it made up of rays of light, each of which is the small-

est portion of light which can be transmitted. The ray is the right
line along which the undulation is propagated, and is practically a

mere conception, indicating direction.

A collection of parallel, diverging, or converging luminous rays
is called a beam of light, and sometimes & pencil of light, the latter

name being generally applied to the last two cases.

The axis of a beam is the geometrical axis of the cylinder or

cone of rays ;
when the axis is normal to the deviating surface, the

beam is direct, and when inclined to it, oblique.

248, When a beam of light is incident upon any surface, it is

generally separated into three portions, viz., a part is scattered or

diffused over the surface, by which the surface becomes visible, a
second part is reflected, and the remainder is refracted.

The proportion of the several parts depends on the polish of the

surface, the angle of incidence, and the nature of the medium. A
perfectly polished surface would be invisible, and the incident beam
would be separated into a reflected and refracted beam alone

;
of

course, such a polish is not practicable. Light regularly reflected

has its intensity increased with the degree of polish, while the in-

tensity of irregularly reflected light is similarly diminished. The
intensity of regularly reflected light from the surface of water is, at

the incidences of

0, 40, 60, 80, 89i,

about 1.8$, 2.2$, 6.5$, 33$, 72$.

At normal incidence, water, glass, and mercury reflect 1.8$,

2.5$, and 66f$, respectively. The differences at small angles of

incidence are more marked than at greater angles, since while both
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water and mercury reflect the same at 89^, -the former reflects but

5^ as much as the latter at normal incidence.

249. A medium is any substance which permits the passage of

light through it.

Since the luminiferous ether is supposed to pervade all matter,

it might be inferred that all bodies could be classed under the head

of media for light. Gold, although one of the most dense of sub-

stances, does permit the passage of light, when beaten into a very
thin leaf

;
and no doubt if other opaque bodies possessed an equal

malleability, the same property would belong to them.

But owing to internal reflection and consequent interference, it

is assumed that an inappreciable quantity of light, if any, passes

through very small thicknesses of opaque bodies. Glass, air, water,

and all other matter which permit the passage of light freely, are

said to be transparent. Translucency is a term applied to such

bodies as permit the passage of diffused light; thus, ground glass
and flint are translucent, while clear glass and quartz crystal are

transparent.

250. Since light is assumed to result from undulatory motion

in the luminiferous ether, all the consequences deduced in the dis-

cussion of the properties of this kind of motion in Part I are at

once applicable to the phenomena of light.

251. Shadows and Shade. From each luminous point
considered as an origin of disturbance, undulations proceed along

right lines in all directions from this origin. Therefore, whenever

they meet an opaque body, this undulation will be deviated from
its original direction, and the effect of light will be wanting along
this direction prolonged.

The absence of this effect is called the shadow of the point of the

opaque body.
The line of the surface of the opaque body, along which rays

drawn from the luminous point are tangent, is called the line of
shade. Since each point of the luminous surface is an origin of

light, we see that in all actual cases the shadow of an opaque body
must be indistinct near its boundary, and gradually merge into the

illuminated surface surrounding the shadow, whenever the lumi-

nous source is of an appreciable area. This modified portion of the

shadow is due to the overlapping of the cones of rays proceeding
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from each luminous point, and is called the penumbra. It is lim-

ited by the space between the two cones, whose elements are tan-

gent to the luminous surface and the opaque body, one having its

vertex between the two, and the other its vertex on the further side

of either one of the surfaces. The softness of shadows in general is

due to the finite extent of luminous surfaces.

252. Every point of the luminous source emitting rays in all

directions, each will carry an image of its luminous point.

Thus, if a lighted candle be placed in front of a small aperture
of a darkened chamber, the aperture will permit the passage of a

limited number of the rays from every point of the candle, each ray,

however, carrying an image of its radiant. The image, as shown in

Figure 35, will be inverted.

If another aperture be made near the first, a second image of

the candle will be formed, overlapping the first, and, while the

luminosity will be increased, the image will lose distinctness, be-

cause of this overlapping. The diffused light of a room during the

day is due to the overlapping images of external objects, caused by
rays proceeding from each of them, thus making their individual

images indistinct. A small aperture in a darkened room will per-
mit the formation of an inverted image of the external scenery upon
a screen placed within the room near the aperture.

253, Photometry. The eye possesses the property of dis-

tinguishing color and intensity.
In determining variations of intensity, the judgment is only

approximate when the colors are the same, and the difficulty of this

appreciation is increased when the colors differ. Equality of in-
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tensity can readily be determined by the eye, while it is not possible
to ascertain the numerical ratio of different intensities by direct

observation.

Photometry has for its object the measurement and comparison
of the intensities of different lights.

254. The principle of all photometric methods is to arrive at

this comparison, by the appreciation of the equality of illumination

of two near surfaces, physically identical. In assuming the dis-

tance of the luminous source from the illuminated surface to be

great in comparison with the dimensions of the surface, and remem-

bering that the intensity of the light is due to the molecular kinetic

energy, we readily see, if there be no absorption of this energy dur-

ing transmission through the intervening media,

1. That the intensity of the illumination on the unit area of

any surface, taken normal to the direction of propagation, at a

distance d from the luminous source, varies as -^-
a*

2. That if / represent the intensity of any given light, and if

it be. supposed to illuminate uniformly any area A, the intensity on

a unit of area varies as A
3. That the quantity of light emanating from any luminous

element, and hence the intensity of illumination on the unit area,

is proportional to the cosine of the angle made by the normal to the

element with the direction considered, and hence varies as the co-

sine of the inclination, or cos i.

4. That if the area on which the light falls is inclined to the

direct line of propagation, the illumination on the unit area is pro-

portional to the cosine of the angle made by this line and the nor-

mal to the surface, or to cos i'.

5. That the illumination on the unit area will vary with the

intrinsic brightness of the source. The intensity of the illumina-

tion on the unit area, parallel to the source, at the distance unity,

may be taken as the measure of the intrinsic brightness.

255. Let S and 8' be the projections of the luminous and the

illuminated surfaces, respectively, on a plane normal to the direc-

tion of the luminous rays; B the intrinsic brightness of the
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source
;
d the distance apart of the two surfaces, and / the intensity

of the illumination ; then, from the above principles, we have

I=B 8
j^. (385)

Making 8' = 1, and calling /, the total brilliancy of the source

at the distance d, we have

/, = *! (280)

&

-^
is the apparent area of the source seen from the illuminated

surface, and making this equal to unity, we have

/ = B. (287)

Therefore the intrinsic brightness of the source is the total

brilliancy of the apparent unit of area of the luminous surface at

the distance 1.

The general method of comparison of the intrinsic brightness of

two sources consists in permitting the rays from each source to fall,

nearly normal, upon adjacent portions of the same surface
;
then

to increase the distance of the stronger light, until the eye judges
the illumination to be equal. We then have

BS __ B,S,
(

v.

~#- ~d?>

from which, by substituting the known values of d, dn S and $,,

the ratio of B, to B can be determined.

256. The apparent intrinsic brightness of an object is equal to

the quantity of light received from it by the eye, divided by the

area of the picture on the retina. Therefore, since the apparent
<j

illumination of the object is B -=-
, and the area of the retinal pic-

8
ture is -, the apparent intrinsic brightness will vary with the real

Cv

intrinsic brightness B, and the object will appear equally bright at

all distances.

This result is deduced under the supposition that no light from

the object is absorbed by the medium through which it passes, and

is therefore only an approximation.
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257. Velocity of Light. In 1675, the Danish astronomer,

Ucemer, noticed certain discrepancies with regard to the observed

times of the eclipses of Jupiter's satellites, which he correctly at-

tributed to the finite velocity of light.

To show this, let S be the sun, EE' the earth's orbit, JJ' the

orbit of Jupiter, and ss' the orbit of Jupiter's inner satellite.

Figure 36.

The planets and satellites shine by the reflected light of the sun,

and therefore cast shadows, whose axes are on the right lines join-

ing their centres with the centre of the sun. Because of the posi-

tion of the orbit of the satellite with respect to the plane of Jupiter's

orbit, the satellite enters Jupiter's shadow at every revolution, and

is eclipsed. If light traversed space instantaneously, its entrance

into and exit out of the shadow might be noted at the exact in-

stants at which these phenomena occurred, independently of the

relative positions of the earth and Jupiter.

But when Jupiter is near opposition, as at J, the interval be-

tween two successive disappearances of the satellite in entering, or

between two successive reappearances on emerging from the shadow

is found to be about 42 hr. 30 min. The periodic time of Jupiter

being about 11 yr. 10 mo., he advances but a short distance, as to

J', while the earth moves to E' near conjunction.

Their distance is now increased by very nearly that of the diam-

eter of the earth's orbit, and the times of apparent immersion of the

satellite are delayed beyond the computed times by about 16 min.

26 sec. Since the periodic time of the satellite is constant, Rosmer
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therefore concluded that light required 16 min. 26 sec. to traverse-

this diameter.

If this diameter were accurately known, and the exact instant

of the eclipse could be noted, a very nearly exact measure for tho

velocity of light could be computed. The reduction of more than

a thousand eclipses of Jupiter's satellites, by Delambre, gave 473.2

mean solar seconds for the time of travel, which corresponds to a

solar parallax of 8.878", and to a velocity of 298,793 kilometres per
second.

258. By the Aberration of Light. Bradley, in 1728,

accounted for the aberration of the fixed stars by assuming that the

velocity of the earth's orbital motion had an appreciable ratio to the

velocity of light. By assuming an ideal star at the pole of the

ecliptic, the value of the constant of aberration, according to his

determination, is 20.25", which corresponds to a solar parallax of

8.881". According to W. Struve, this constant should be 20.445",

decreasing the parallax to 8.797", and corresponding to a velocity

of 296,067 kilometres per second.

The principle on which this method is based is given in the text

on Astronomy.

259, By Actual Measurement. Owing to the great

velocity of light, it is not possible to measure directly the very small

interval of time required for light to traverse any terrestrial dis-

tance. But Fizeau, Foucault, Wheatstone, Cornu, and more

recently Michelson, have succeeded in obtaining its value within

very near limits. The essential principle of the experiment by
Fizeau consists in causing a toothed wheel to revolve with great,

but uniform velocity, in a plane perpendicular to the track of a

small parallel beam of light. The toothed wheel in its rotation

alternately permits and obstructs the passage of the beam, accord-

ing as an interval or a tooth is interposed in its track. The beam
of light, after traversing the distance determined upon, is reflected

by a small mirror, and may or may not be intercepted on its return,,

depending on the ratio of the velocity of rotation of the wheel and

the velocity of light. Should the velocity of rotation be such that

the returning beam passes through the next interval, the circum-

ference of the wheel would have moved through an angle equal to
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that subtended by a tooth and an interval, while the light has tra-

versed double the distance from the wheel to the reflector.

When the angular velocity of the wheel is doubled, the light

passes through the second interval, and so on. The value for the

velocity of light determined by this method is 315,364 kilometres.

Cornu has recently made use of the same method, but with a very
much improved apparatus, and has found, as the mean of 504 ex-

periments, the value of 300,400 kilometres for the velocity of light

in vacuo, with a probable error of less than .001.

Figure a?

260. Foucault's method is a modification of the preceding. Let

A, in Figure 37, be a luminous line, BC a lens whose focal length
for the position A is B# + bD, bOc a revolving mirror, D and E
circular mirrors whose centre is at 0, MM' a glass plate, R a reticle,

and L an eye lens to view the image of A. Now if the mirror is

at rest, the path of a ray from A, passing through the lens BC and

reflected from 0, is AB#D
; returning by reflection from D, its path

is DcCA. A part of its light is reflected from the first surface of

MM', and the image of A is seen coincident with its object at a.

If now the mirror is put into sufficiently rapid rotation, the re-

turning ray meets it at b'Oc', and the ray is reflected along cC'A',

and its image is seen at '. The angle bOb' is known from the

velocity of rotation, the distance OD is given, and the displacement
aa is measured by a micrometer.

These data serve to measure the velocity of light in terms of the
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angular velocity of 0. By the addition of a tube filled with water

at FF', the velocity of light in water was found and shown to be

less than that in air.

In the diagram annexed to the figure, ab is the position of the

image when is at rest, c' when has a determinate velocity, and

a'b' the corresponding position of the image after the ray has tra-

versed the water. The result of this determination is 298,187

kilometres for the velocity of light, corresponding to a solar parallax

of 8.86". Michelson, by an ingenious modification of the method

of Foucault, by which he separated his mirrors 2000 feet, and

caused one of them to revolve 257 times per second, obtained a de-

flection of his image exceeding 133 millimetres, and thus obtained

results which are claimed to be exact to within one ten-thousandth,

due to this element of deflection.

As the mean of 1000 observations, he has determined 299,930

kilometres per second for the velocity of light in vacuo.

A new investigation of this important constant, under the di-

rection of Prof. Newcomb, is now in progress, and which, when

completed, will undoubtedly be as close an approximation to the

true value as the present state of experimental science can furnish.

261. Assuming that light is due to the transversal vibrations of

the luminiferous ether, we see, Eq. (119), that in isotropic media

the velocity of light depends on the coefficients a, b, c, etc., which

are functions of the elasticity and density of the medium.
In homogeneous light, or that in which A is constant, V will

therefore vary when light passes from one medium into another.

The conclusions derived by supposing a variation in A, the medium

remaining the same, will be considered under the dispersion of light.

GEOMETRICAL OPTICS.

262, In geometrical optics it is only necessary to take account

of the variation of the velocity due to a change in the elasticity and

density of the ether, in passing from one isotropic medium into

another. Hence, we consider homogeneous light alone in the dis-

cussions which follow. These changes are given by the formula

Y
sin =

fi sin 0' = -= sin 0'. (289)
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The ratio \i is called the index of refraction; it is the ratio of

the velocity of light propagation in the two media, and is called the

absolute index when the medium from which it passes is the ether.

When any two other velocities are compared, the ratio is called the

relative index ; the relative index is then only the ratio of the two

absolute indices. When reflection is considered as a particular case

of refraction, \i is always taken as 1.

263, A radiant is a point from which the rays proceed ;
it is

said to be real when the beam is parallel or diverging, and virtual

when converging. A focus is the point in which the rays meet

after deviation, or in which they would meet if prolonged in either

direction
;
in the former case the focus is real, and in the latter, if

the point of meeting is found by prolonging the rays backward, it is

virtual. A radiant and its focus are the centres of curvature of the

nndeviated and deviated pencils, respectively. In the following

discussions, distances estimated in the direction of wave propaga-

tion, from any origin whatever, are taken as negative, and iu the

contrary direction as positive.

264. Deviation of Light by Plane Surfaces. Let us

suppose the incident medium to be any whatever, as air, and that

the ray enters any other medium, as glass, whose surface is plane,

Then, Figure 38, we have, for the first refraction,

sin =
\i sin 0', (290)

in which \i is the relative index of air referred to glass ; and for the

first reflection we have

sin = sin 0. (291)

The angle 0' is less than 0, because

^ = -y
is greater than unity, since the

velocity of wave propagation of light in

air is found by experiment to be greater
than that in glass. Should the velocity
in the medium of intromittance be

greater than that in the medium of in-

cidence, \i would be less than unity and

<f>' would be greater than 0. The re- Figure 38.


